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FOREWORD

Engineers are the backbone of any modern society. They are the ones responsible for the
marvels as well as the improved quality of life across the world. Engineers have driven
humanity towards greater heights in a more evolved and unprecedented manner.

The All India Council for Technical Education (AICTE), have spared no efforts towards
the strengthening of the technical education in the country. AICTE is always committed
towards promoting quality Technical Education to make India a modern developed nation
emphasizing on the overall welfare of mankind.

An array of initiatives has been taken by AICTE in last decade which have been
accelerated now by the National Education Policy (NEP) 2020. The implementation of
NEP under the visionary leadership of Hon’ble Prime Minister of India envisages the
provision for education in regional languages to all, thereby ensuring that every graduate
becomes competent enough and is in a position to contribute towards the national growth
and development through innovation & entrepreneurship.

One of the spheres where AICTE had been relentlessly working since past couple of years
is providing high quality original technical contents at Under Graduate & Diploma level
prepared and translated by eminent educators in various Indian languages to its aspirants.
For students pursuing 2" year of their Engineering education, AICTE has identified 88
books, which shall be translated into 12 Indian languages - Hindi, Tamil, Gujarati, Odia,
Bengali, Kannada, Urdu, Punjabi, Telugu, Marathi, Assamese & Malayalam. In addition
to the English medium, books in different Indian Languages are going to support the
students to understand the concepts in their respective mother tongue.

On behalf of AICTE, | express sincere gratitude to all distinguished authors, reviewers
and translators from the renowned institutions of high repute for their admirable
contribution in a record span of time.

AICTE is confident that these outcomes based original contents shall help aspirants to

master the subject with comprehension and greater ease.
RSNV

(Prof. T. G. Sitharam)
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PREFACE

This book is titled Electric circuits and Networks. The response of any electric circuit is
achieved by many methods. This book includes the explanation of those methods applied
to various electric circuits. This book is suitable for those who are searching for the
solution methods of an electric circuit in a simpler way by different methods. Most of the
units are concentrated to solve the ac circuits and a smaller number of dc circuits.

Unit - I discusses the steady-state response of single-phase ac series and parallel
circuits. The circuit consists of different passive components like resistances, inductances
and capacitances are considered for the discussion. The concept of representations of
sinusoid, phasor representation of sinusoid, concept of impedance, power and power
triangle are discussed with suitable examples.

Unit - Il describes the source transformations (voltage to current and vice versa), Star-
delta, delta — star transformations of three phase connections. Both mesh and node analysis
are used for finding the currents in the loops and the node potentials. Many theorems are
discussed in detail for ac circuits. The duality of electric circuits is also presented.

Unit - III explains the three-phase systems with star and delta connections under
balanced and unbalanced loading conditions. The power calculations for the three-phase
systems and power measurement methods are discussed.

Unit - 1V discusses the responses of first order and second order systems in the time
domain. Source free circuits and step responses of different electric circuits are explained.
Application of Laplace transformation for electric circuits with necessary examples is also
included.

Unit - V describes the graph theory concepts to the electric circuits. The tie-set analysis
and cut-set analysis are discussed. Also, two-port networks and its parameters like
impedance parameters, admittance parameters, ABCD parameters and hybrid parameters
are deliberated. The relationship between these parameters is also derived and tabulated.

The book consists of the LTspice simulation of an electrical circuit which helps the
Students to understand the concepts very easily.

Dr. Jamuna K.
Dr. Nilanjan Tewari
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OUTCOME BASED EDUCATION

For the implementation of an outcome based education the first requirement is to develop
an outcome based curriculum and incorporate an outcome based assessment in the
education system. By going through outcome based assessments, evaluators will be able to
evaluate whether the students have achieved the outlined standard, specific and measurable
outcomes. With the proper incorporation of outcome based education there will be a
definite commitment to achieve a minimum standard for all learners without giving up at
any level. At the end of the programme running with the aid of outcome based education,
a student will be able to arrive at the following outcomes:

Programme Outcomes (POs) are statements that describe what students are expected
to know and be able to do upon graduating from the program. These relate to the skills,
knowledge, analytical ability attitude and behaviour that students acquire through the
program. The POs essentially indicate what the students can do from subject-wise
knowledge acquired by them during the program. As such, POs define the professional
profile of an engineering diploma graduate.

National Board of Accreditation (NBA) has defined the following seven POs for an
Engineering diploma graduate:

PO1.Basic and Discipline specific knowledge: Apply knowledge of basic mathematics,
science and engineering fundamentals and engineering specialization to solve the
engineering problems.

PO2.Problem analysis: Identify and analyses well-defined engineering problems using
codified standard methods.

PO3.Design/ development of solutions: Design solutions for well-defined technical
problems and assist with the design of systems components or processes to meet
specified needs.

PO4.Engineering Tools, Experimentation and Testing: Apply modern engineering
tools and appropriate technique to conduct standard tests and measurements.

POS. Engineering practices for society, sustainability and environment: Apply
appropriate technology in context of society, sustainability, environment and ethical
practices.
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PO6.Project Management: Use engineering management principles individually, as a
team member or a leader to manage projects and effectively communicate about well-
defined engineering activities.

PO7.Life-long learning: Ability to analyse individual needs and engage in updating in
the context of technological changes.
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COURSE OUTCOMES

After completion of the course the students will be able:

Cot1:

CO2:

CO3:
CO4:

To understand and solve problems related to single phase A.C series and parallel
circuits.

To use and apply principles of circuit analysis and network theorems for
troubleshooting electric circuits.

To interpret and solve problems related to three phase circuits.

To understand the transient behaviour of electric circuits using differential equations
and Laplace transforms.

COS5: To analyse electric circuits using graph theory and concept of two-port networks.
Course Expected mappings with Programme Outcomes (Pos)
Outcomes (1: Weak Correlation; 2: Medium Correlation; 3: Strong
Correlation)
PO1 PO2 PO3 PO4 PO5 PO6 PO7
CO1 2 3 1 2 1 1 1
CcO2 2 3 1 2 1 - 1
Cco3 2 2 2 2 1 1 -
CO4 1 3 3 1 1 - 1
(60 1 3 2 2 1 - -
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GUIDELINES FOR TEACHERS

To implement Outcome Based Education (OBE) knowledge level and skill set of the
students should be enhanced. Teachers should take a major responsibility for the proper

implementation of OBE. Some of the responsibilities (not limited to) for the teachers in

OBE system may be as follows:

Within reasonable constraint, they should manoeuvre time to the best advantage of
all students.

They should assess the students only upon certain defined criterion without
considering any other potential ineligibility to discriminate them.

They should try to grow the learning abilities of the students to a certain level before
they leave the institute.

They should try to ensure that all the students are equipped with the quality
knowledge as well as competence after they finish their education.

They should always encourage the students to develop their ultimate performance
capabilities.

They should facilitate and encourage group work and team work to consolidate
newer approach.

They should follow Blooms taxonomy in every part of the assessment.

Bloom’s Taxonomy

Level Teacher should Student should be Possible Mode of
Check able to Assessment
Create Students ability to Design or Create Mini project
create
Students ability to .
Evaluate justify Argue or Defend Assignment
Anal Students ability to Differentiate or Project/Lab
yse distinguish Distinguish Methodology
Appl Students ability to Operate or Technical Presentation/
PPy use information Demonstrate Demonstration
Understand Smder}ts abll.lty to Explain or Classify Presentation/Seminar
explain the ideas
Remember Students ability to Define or Recall Quiz
recall (or remember)
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GUIDELINES FOR STUDENTS

Students should take equal responsibility for implementing the OBE. Some of the

responsibilities (not limited to) for the students in OBE system are as follows:

Students should be well aware of each UO before the start of a unit in each and
every course.

Students should be well aware of each CO before the start of the course.
Students should be well aware of each PO before the start of the programme.
Students should think critically and reasonably with proper reflection and action.

Learning of the students should be connected and integrated with practical and real
life consequences.

Students should be well aware of their competency at every level of OBE.
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ABBREVIATIONS AND SYMBOLS

Abbreviation Full Form

A Ampere

AC Alternating Current
BW Bandwidth

DC Direct Current

F Farad

H Henry

Hz Hertz

KCL Klrchoff’s Current Law
KVL Klrchoff’s Voltage Law
m Milli

Q factor Quality Factor

RMS Root Mean Square

VA Volt-Ampere

w Watts

Q Ohm

0 Mho

v Micro
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1 Single Phase AC Circuit

UNIT SPECIFICS

Through this unit the following topics have been discussed.:

o Phasors and complex representation of sinusoidal waveforms

o RMS and average value calculation

o Steady state response of pure resistor, inductor and capacitor

o Concept of instantaneous power, average power, reactive power and complex power
o Steady state analysis of series circuits (R-L, R-C, R-L-C)

o Steady state analysis of parallel circuits (R-L, R-C, R-L-C)

o Series and parallel resonance

RATIONALE

This fundamental unit on single phase ac circuit helps the students to get a fundamental knowledge
about the phasor representation of sinusoidal, phase delay between different sinusoidal waveforms,
calculation of rms and average value of alternating quantity. This knowledge is further applied to
analyse different ac circuits under steady-state conditions. The steady-state response also includes
the behaviour of resistance, capacitance and inductance for different circuit configurations. The
idea about complex power in ac circuit also gives clear idea about the energy dissipating and energy
storage elements. The knowledge of resonance is acquired for series as well as parallel circuits,
which is extremely useful for filter design, frequency selection for radio communication and other
applications. All these fundamental knowledge are helpful to understand the concepts of power
engineering. The related problems are solved and included for insight knowledge of this unit. Circuit
theory is the foundation to understand and acquire the knowledge in the domain of power
engineering.
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PRE-REQUISITES

Trigonometry

Vector calculus

UNIT OUTCOMES

List of outcomes of this unit is as follows:

Ul-OlI:
Ul-02:

Ul-03:
Ul-04:
Ul-05:

Understand the phasor representation of sinusoidal waveform

Apply mathematical formula to calculate the rms and average value of alternating
waveforms

Apply phasor concepts to solve the ac circuits under steady state conditions

Realize the power distribution and their role in circuit components

Apply vector calculus to solve complex problems

EXPECTED MAPPING WITH COURSE OUTCOMES

Unit-1
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)
Outcomes
CO-1 CO-2 CO-3 CO-4 CO-5

U1-o1 3 3 - - ;
U1-02 3 2 - - -
U1-03 3 3 - - -
U1-04 1 1 - - -
U1-05 2 2 - - -
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1.1 Generation of alternating voltage

The common ways of manifestation of energy are light, heat and sound. The term ‘energy’ means the
ability of doing work. The use of energy became popular after the invention of electricity. Fossils fuels,
potential energy of water and nuclear energy are the major source of the generation of electricity.
Though renewable energy sources are also getting popularity to cater the problems of environmental
hazard and rapid depletion of fossil fuels.

| ] 2 Transformer _I
Boiler o = r —l
= = To grid
% dé) = I\ supply
a2 ? ) Generator
55 7
Furnace .80 =
—_— T -
Fuel S 5
I Feed water
heater
Feed pump2 Feed pumpl

Fig.1.1: Schematic of thermal power plant

Fig.1.1 depicts the schematic diagram of fossil fuel based power plant. In a fossil fuel based power
plant or commonly known as thermal power plant the main source of energy is coal, gas or oil.
Chemical energy of these fuels are converted in to heat energy in furnace. This heat energy is used to
generate super-heated steam in boiler chamber. The steam then enters in turbine which resembles a
giant fan with hundreds of blades. High pressure steams are discharged against the turbine blades to
rotate it. The potential energy of the steams is converted in to the mechanical energy which is
responsible for the rotation of the turbine. The turbine shaft is connected to the alternator or
synchronous generator to feed the mechanical energy into it. This mechanical energy is then converted
into electrical energy by the principle of electromagnetic induction in the alternator. Usually step up
transformers which are also known as generating transformer, are connected immediately after the
alternator to step up the alternating voltage in order to reduce the transmission loss and synchronise it
with utility grid.
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Voltage (V)
or
Current (A)

Amplitude or Peak Value

—p'
T=1f=2r/w

Fig.1.2: An alternating voltage or current waveform

Alternating voltage is generated by a rotating magnetic field linked with a stationary coil of an
alternator. It can also be produced by the interaction of rotating coil and static magnetic field.
Alternating voltage and current produced by the alternator are represented by sinusoidal wave as shown
in Fig.1.2. It is very common type of alternating voltage and alternating current. An alternating
waveform changes its magnitude and direction periodically. Fig.1.3 represents few other types of
alternating waveforms to represent alternating voltage.

VA VA
f i
Vi Vi

~Y
~Y

Fig.1.3: Different alternating voltage waveforms

1.2 Important terms related to alternating waveform
Instantaneous value: It is the value of any alternating quantity or waveform at any instant of time.

Cycle: When the alternating waveform completes one set of positive and negative values, it is called
one cycle.
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Amplitude: The maximum positive and negative value of an alternating waveform is known as
amplitude or peak value of it.

Time period: Time taken by any alternating waveform to complete one cycle is called time period. It
is measured in seconds.

Frequency: The number of cycles completed per second by any alternating waveform is known as
frequency of that waveform. It is measured in hertz (Hz) or cycles per second (c/sec).

The relation between frequency (f) and time period (7) is given by,

1
= = 1.1
=7 (L1)
Phase: It is the angular displacement of any alternating waveform, which denotes the position of the
waveform.

Phase difference: It is used to compare the position of two alternating waveforms. Two alternating
waveforms are in phase means their maximum, minimum and zero values reaches at the same
time.

A leading alternating waveform is one which attains its maximum, minimum and zero values earlier
compared to other waveform. Similarly, a lagging alternating waveform is one which attains its
maximum, minimum and zero values later compared to other waveform. A plus sign is used to
indicate leading and minus sign indicates lagging phase difference.

X,y

S

Fig.1.4: Illustration of phase difference

In Fig.1.4, x leads y by a phase of #; or y lags x by ;.

1.2.1 Mathematical and graphical representations of sinusoidal
waveform

A sinusoidal voltage can be expressed as,
2n
v(t) =V, sinf = V, sinwt = V,sin2nft = V, sinTt (1.2)
Where

()
Vlﬂ

instantaneous value in volts.

amplitude or peak value in volts.
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0 = angular displacement or phase in degree or radians.
T = time period in sec

f = frequency of the sinusoidal voltage in Hz.

o = angular frequency in radians /sec.

wt = Angular displacement or argument in radians.

T = time period in sec.

From the sinusoidal voltage waveform as indicated in Fig.1.2 it is clear that w7 = 2n. Sinusoidal
waveforms repeat itself after every ‘7" seconds. The waveforms repeat itself after certain time
are known as periodic waveforms. These type of waveforms are represented as,

f(@t) =f(t+nT) (1.3)
Where
f(t) = periodic waveform.
n = integer value.

If n=1, then using equation (1.2), it can be written as
2n
v(t+T)=V,sinw(t+T)=V,sinw (t + ;) =V, sin(wt + 2w) = V,, sin wt (1.4)

Hence in general, equation (1.4) is expressed as,
v(t) = v(t + nT) (1.5)

v(1) is periodic because v(?) and v(¢ + T) have the same value as indicated in equation (1.4).

Equation (1.2) represents a sinusoidal voltage waveform with no phase delay. In general, it is expressed

as,
v, (t) =V, sin(wt + @) (1.6)
Or
v,(t) = V,, sin(wt — @) (1.7
Where

o = phase.
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V,, sin(wt + @)

Vasinwt
V.. sin(wt — @)

Fig.1.5: Three sinusoidal voltage waveforms with different phases

Fig.1.5 shows three sinusoidal voltage waveforms with different phases and same amplitude and
frequency. Visin(wt+¢) leads Visinwt and V,sin(wt — @) by ¢ and 2¢ respectively. This means
the maximum value of V,, sin(wt+¢) reaches first compared to other two waveforms. Similarly,
Vmsin(wt — @) lags Vasinwt by @ that’s why its phase is represented by ‘— ¢’.

Sinusoidal waveforms are mathematically represented in either sine or cosine form. While comparing
two or more sinusoidal waveforms, it is convenient to represent all of them either in sine or in
cosine. In this regard the following trigonometric relations are useful to transfer sine to cosine
or vice versa.

sin(wt +90°) = + cos wt (1.8)

sin(wt + 180°) = —sin wt (1.9)

cos(wt £90°) = Fsinwt (1.10)

cos(wt +180°) = — coswt (1.11)
+eosmt +eoswt

N

Anti-clock wise 2 Clock wise 4
rotation ‘/r rotation
+90" +90° o( \90"
-S1nenf = +sineor
-f_-)uk 4/-90“

\J
=COSsef =COseof

(a) (b)

-s1nwt

Fig.1.6: Relation between sine and cosine: A graphical representation
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Equations (1.8) to (1.11) can be illustrated graphically through Fig.1.6 also. In this figure, angles are
taken positive when they are measured anti-clock wise from any axis. Magnitude of sine is
considered along horizontal axis and magnitude of cosine is considered along vertical axis.
Using this graphical approach, it is possible to co-relate sinusoidals which are represented as a
function of sine as well as cosine. For an example, if 90° is added with sinw? i.e. sin(ct+90°)
then it becomes cosw? by having a rotation of 90° in anti-clock wise direction from +sincwt,
which is mentioned in Fig.1.6 (a). Similarly, as per Fig.1.6 (b) if 90° is subtracted from sinw?
i.e. sin(ewt — 90°) then it will be — coswt having a rotation of 90° from +sinwt in clock wise
direction.

For example, the instantaneous value of any sinusoidal voltage is mentioned by
v(t) = 10 sin(wt — 45°) (1.12)

The graphical representation of the equation (1.12) is shown in Fig.1.7. An angle of 45° is measured
from +sinwt in clock wise direction as ‘-ve’ sign is present before the angle.

+cosmt
A
-Sinmr L sincof
_45[}
v/ .
Clock wise
-ve
-COSmf

Fig.1.7: Graphical representation of the voltage mentioned in equation (1.12)

Example 1.1 Find out the phase angle between the currents i; (t) = 5sin(wt + 30°) in A and i,(¢) =
—6cos(wt — 60°) in A. Also comment which current is lagging.

Solution:
Approach 1 (Mathematical)

To find out the phase angle between i; and i, it is required to represent them in either sine or cosine
form and amplitudes with same sign. Here both the quantities are represented in sine form and
amplitudes with positive sign as,

i;(t) = 5sin(wt + 30°)
i,(t) = —6 cos(wt — 60°) = 6sin(wt — 60° — 90°) [ Using equation (1.8)]
i, = 6sin(wt — 150°)

As i is leading by 30° and i> is lagging by 150°, hence it is clear that the phase difference between
them is (30° + 150°) i.e. 180°. It is also evident from the expression that i; leads i> by 180°.
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Approach 2 (Graphical)

i; and i> are presented graphically as shown in Fig.1.8. i; is represented by rotating 30° in anti-clock
wise direction from +sinwt? as ‘+’ve sign is associated with this angle. Similarly, i is represented
by rotating 60° in clock wise direction from —cosw? as ‘-’ve sign is associated with this angle.
From this figure, it is clear that the phase difference between i; and i> is 180°.

+coswmit
Anti-clock wise A i
+ve
180° »
. +30
-S1nm7- ¥ > +sinat
-60°
I~ 2
\
-COoswt

Fig.1.8: Graphical representation of the i; and i; as mentioned in Example 1.1

Example 1.2 Find the amplitude, phase, time period and frequency of the voltage v(t) =
15 sin(50t + 30°) in Volts.

Solution:
The instantaneous value of the voltage is given by,
v(t) = 15sin(50t + 30°)
The standard form of the sinusoidal voltage is,
v(t) = Vi, sin@2rft + @) = V,, sin(wt + @)
Comparing the above two equations, we can get,
Amplitude or Maximum value = V;,, = 15 volts
Phase = ¢ = 30°
Frequency in Hz is given by,
50 25
"2t
Angular frequency = w = 2nf = 50 rad/ sec.

Time Period in sec. is given by,
T = 1 =
T f 25
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Example 1.3 A sinusoidal alternating voltage waveform takes 0.6 ms to become 10 A for the first time
after being instantaneously zero. The frequency of the voltage is 50 Hz. Find the maximum value
of the voltage waveform considering zero phase delay.

Solution:

v(t) =10A4,t = 0.éms,f =50 Hz

The instantaneous voltage waveform is represented as,
v(t) =V, sin2nft

10 = V,sin(2 xm X 50 X 0.6 X 1073)

10 = 1, x 0.187

Vi = 53.39 Volts.

1.2.2 Phasor representations

Phasor represents the amplitude and phase of a sinusoidal in complex form. The concept of phasor yields
an easier way to analyse a circuit excited by sinusoidal voltage or current source. The plot of a
sinusoidal voltage of v = V,, sin wt on a complex plane is represented in Fig.1.9.

Voltage (V) 4

Tmagmary Axis i
L‘/-Am]\.iilmlc or Peak|Value(T7,)

i P it
Anti-clock wise 3 -
Rotation at ;.//—-
speed of
o rad / see o,
Real Axis o = I I ;
’ —- w; -!jf frh
- wr=1{,

Fig.1.9: Correlation between phasor and sinusoidal quantity

As the phase passes, the tip of the arrow rotates on a circle of radius V;, (maximum value of the sinusoidal)
with the same angular velocity or frequency () as that of the sinusoidal voltage in anti-clock wise
direction. The arrow is represented as a rotating phasor with an amplitude of the maximum value
of the sinusoidal. The direction or position of this phasor is determined by it’s angle with the real
axis measured in anti-clock wise direction. As this phasor has both magnitude and phase, it can be
represented as a phase. Hence, for this sinusoidal voltage in phasor form (polar) it can be
represented as,

V =1,20° (1.13)



Electric Circuits and Networks | 11

In general, sinusoidal voltages with an amplitude of ¥V, and phase lead of & or phase lag of 6 are
represented in phasors (polar form) by equations (1.14) and (1.15) respectively.
V="V,,46 (1.14)
V=V,.—6 (1.15)
Phasor representation of the sinusoidal voltage and current is shown Table 1.1 and Fig.1.10.

Table 1.1 Time domain to phasor domain transformation of sinusoidal

Time domain representation of sinusoidal Phasor domain representation of
sinusoidal (Polar)
v, (t) = V, sin(wt + @) Vi =V, 20
v,(t) = V, sin(wt — @) V,=V,£—¢
i1(t) = I, sinwt I, =1,20°
i,(t) = I, sin(wt — ) I,=1,2—0
Anti-clock Wise‘ V,
+ve
- »Reference

Clock wise
-ve

Fig.1.10: Phasor representation of the sinusoidal quantities mentioned in Table 1.1.

In rectangular form or trigonometric form, the same phasors of equations (1.14) and (1.15) can be written

as,

V =V, [cos6 + jsin 0] (1.16)

Where, j = v—1 is a unit imaginary in complex plane. j is a rotational operator and +; denotes rotation
of 90° in anti-clock wise direction. Similarly, any phasor in rectangular form e.g. x + jy can be
represented in polar form and exponential form by the following relations,

. -1Y .
x+jy=x2+y2z tan_li =720 = X% + y2e/ % = rel? (1.17)

Example 1.4 Two sinusoidal currents have amplitudes 10 A and 15 A respectively. Second current is
leading the first one by 60°. Find the resultant sum of these currents in polar form.
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Solution:
If the phase of first current is taken as 0°, then the currents phasors can be written as,
I, =102£0° A
I, = 152600 A
Resultant current or sum of these currents are given by,
I=1+ I, = 1020° + 15£60°
= 10 [cos 0° + jsin 0°] + 15 [cos 60° + j sin 60°]
= 10+75+,0.866
15+ 0.866
15+ 0.866
15.025286.69° A [Using the formula mentioned in equation (1.17)]

1.3 Average and Root Mean Square (RMS) value of alternating waveforms

1.3.1 Average value of alternating waveforms

Average value of any periodic waveform, x(#) with a period of 7 is calculated as,

1 T
Xavg = T JO x () dt (1.18)

In case of any symmetrical alternating waveforms the average value over a time period is zero because
the area under the symmetrically alternating waveform during a positive half cycle is cancelled by
the area under the same waveform during the immediate negative half cycle. Hence, for these
quantities the average values are calculated by considering the values either in positive half of the
time period or in negative half of the time period. But in case of asymmetrical waveforms, the
average value is calculated by considering the total time period.

Example 1.5. The instantaneous value of any sinusoidal voltage is given by, v(t) = V,, sin wt Volts.
Find the average value.

Solution:

As, sinusoidal waveforms have the symmetry in their positive and negative half cycles, then the average
value of this voltage is calculated over positive or negative half cycle as follows,
1 T
Vovg = — | Vipsinwt dwt
avg T JO m

1
= - [V, cos wt]F

2V
— Volts
T
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Example 1.6. Find the average value of the waveform shown in Fig.1.11 considering sinusoidal variation
of the waveform.

Fig.1.11: Rectified voltage waveform
Solution:
The mathematical equation of the waveform shown in Fig.1.11 is given by,
v(t) = Vysinwt 0L wt< m

The waveform is not symmetrical alternating waveform, so the average value of the waveformis obtained
as,

1

T ] 2V,
Vivg = — Vi sinwt dot =
T Jo

m

Example 1.7. Find the average value of the waveform shown in Fig.1.12. Consider sinusoidal variation
of the waveform indicated.

VA

,'r
m

-
T 2n 3n (,l)t

Fig.1.12: Voltage waveform
Solution:
The mathematical representation for the waveform shown in Fig.1.12 is given by,
v(t) = Vysinwt 0L wt< m
=0 T< wt<2m
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The average value of the waveform is as mentioned below,

_1
9 21

Example 1.8. An alternating current waveform is shown in Fig.1.13. Find it’s average value.

1A

Vin

T 21 V
(J Vi sinwt dwt + J 0 da)t) = = [~ coswt]f = —
0 x 2

%
av, T

0.5T T

............. < 1,

Fig.1.13: Current waveform
Solution:

The mathematical representation for the current waveform shown in Fig.1.13 is given by,
I,—0 2I

1 =—t=—mt 0<t< 05T
i = 957=0 T =t=
0—(=I,)  2I,
= Ml _Zmy o5T<t<T
T—o05T '~ T sts

As the waveform is symmetrical, then the average value of the current waveform is written as,

R T R WY [ T
‘“’g_O.STJO T STz, 2

1.3.2 RMS value of alternating waveforms

RMS value gives the idea about the effectiveness of any alternating quantity. RMS value of any periodic
waveform, x(?) with a period of T'is calculated as,

1 T
Xoms = TJ x2 (t) dt (1.19)
0

In case of any symmetrical alternating waveform the rms value over a full cycle is equal to the rms value
of over a half cycle due to symmetry. Hence, for these quantities the rms value is calculated by
considering the values either in positive half of the time period or in negative half of the time
period. But in case of asymmetrical waveforms, the rms value is calculated by considering the total
time period.
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Example 1.9. The instantaneous value of any sinusoidal voltage is given by, v(t) = V,, sin wt. Find the
rms value.
Solution:

As, sinusoidal waveforms have the symmetry in their positive and negative half cycles, then the rms
value of this voltage over the half cycle is enough to get the actual rms value as follows,

1" .
Vims = |— | Vi”sin? wt dwt
T Jy

V2 (™
- J (1 —cos2wt) dwt
2 J,

|/ [ . sinZwt]”
= — |wt —
2m 2 0
v

sz sin2m  sin0
- - - 250)

Example 1.10. Find the rms value of the waveform shown in Fig.1.11.

Solution:

The mathematical equation of the waveform shown in Fig.1.11 is given by,
v(t) = Vysinwt O0< wt< m

The waveform is not symmetrically alternating waveform during the entire time period, so the rms value
of the waveform is as follows,

1 T 5 VZ T Vm
3 m
Vims = EJOVm sin? wt dwt = gjo (1 — cos 2wt) dwt ==

Example 1.11. Find the rms value of the current waveform shown in Fig.1.14.
/ A

I}H

o === P
:-i]

.

h—...]
~Y

]HJ'

Y

Fig.1.14: Current waveform
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Solution:
The mathematical representation for the current waveform shown in Fig.1.14 is given by,
it)y=1, 0<t< 05T
=—-I, 05T<t<T

As the waveform is symmetrically alternating waveform in the positive half as well as negative half of
the entire time period, so the rms value of the waveform is given by,

1 0.5T
L= |[— 12 dt

1.4 Form factor and peak factor of alternating waveforms
Form factor of an alternating waveform is defined as the ratio of its rms value to its average value.

rms value

Form Factor =
average or mean value

Peak factor of an alternating waveform is defined as the ratio of its maximum value to its rms value.

maximum value

Peak Factor =

rms value
Example 1.12. An alternating voltage waveform as shown in Fig. 1.15 is given by,
T
v(t) =0 0$a)t<§
T
= V, sinwt gs wt<m

4 m

\J

/3 T 4w/3 2n ot

Fig.1.15: Current waveform
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Find the average and rms value of this waveform. Also calculate the form factor and peak factor of the
waveform shown in Fig. 1.15

Solution:

The average value of the waveform is calculated as,

1 T
== L Vi sinwt dwt

3

Vavg

e

m
T

I
[1+ cos §]

w
§<

2
The rms value of the waveform is given by,

1 T
Vims = |— J Vn? sin? wt dwt

A
3

\/V 3
m
= 1 — cos 2wt) dwt
)¢
T 3
V2 sin 2wt]"
= |5 |t~ |
3
sz 113 sin2mg  SIn—
-j—n(”‘r( 7 "2
’1
=V, 3 + 0.0689
= 0.63V,
The form factor of the waveform is calculated as,
Form Factor = 063V =1.32
orm Factor = 0477y, - ¢

The form factor of the waveform is calculated as,

Peak Factor = Vi = 1.587
ea actor = 0.63Vm_ .
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1.5 Steady state response of pure resistor, inductor and capacitor for a
sinusoidal ac voltage source

1.5.1 Pure resistive circuit

P
o

Fig.1.16: Pure resistive circuit

A pure resistive circuit of resistance ‘R’ is connected to a sinusoidal ac voltage source of v(t) =
Vi sin wt as shown in Fig.1.16. The phasor form of this voltage is expressed as,

V =1V,20° (1.20)

The instantaneous value of the current flowing through the circuit can be expressed as,

Vi sin wt

it) = mT = I, sinwt (1.21)
Where, I, = % is the maximum value of alternating current flowing through the circuit. The current

phasor (/) is given by,

Vn20°

1= ’"R = [,,20° (1.22)
The voltage across the resistor in phasor form can be expressed as,

Ve=IR=V (1.23)

1.5.1.1 Phase, impedance and power factor of pure resistive circuit
Phase:

The current and voltage waveforms and their phasor representations are shown in Fig.1.17 and Fig.1.18
respectively.

Fig.1.17 Voltage and current waveforms of pure resistive circuit excited by sinusoidal ac voltage
source
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I T
—L

Fig.1.18 Voltage and current phasors of pure resistive circuit excited by sinusoidal ac voltage source

It is clear from both the diagrams and equations (1.20) and (1.21) that the current and voltage in a pure
resistive circuit excited by sinusoidal ac voltage source are in phase. In other word, the phase
difference between the current flowing through the circuit and voltage across the resistor is zero.

Impedance:

Impedance of any ac circuit is defined as the resistance offered by the circuit to the flow of current
through it. It is measured in ohm (). In a pure resistive circuit excited by ac voltage source, the
impedance of the circuit is given by,

Vo V,20° V.

—=——=—XR=R 1.24

I~ 1,200 V. (1.24)

Admittance of any ac circuit is just reciprocal of impedance. It is measured in siemens (S). In case of

pure resistive ac circuit, it is just the conductance (G) i.e reciprocal of resistance.
Y ! G (1.25)
=== .

Power factor:

Power factor (PF) is defined as the cosine of the angle between the current phasor and voltage phasor.
Sometimes, this PF'is called as displacement PF. But in general, for power system applications,
this is termed as just PF. In this case voltage and current phasors are in phase and the PF'is obtained
as,

PF = cos0° =1 (1.26)

1.5.1.2 Instantaneous and average power of pure resistive circuit

Instantaneous power:

The instantaneous power absorbed by any electric circuit element is the product of instantaneous current
flowing through that element and instantaneous voltage across the same element. It is measured in
watts (W). The expression of instantaneous power is given by,

p(t) = v(t)i(t) (1.27)

For this circuit the instantaneous power is calculated as,

1
p(t) =V, sinwt X I, sinwt = VI, sin? wt = EVmIm [1 — cos2wt]

1 1
p(t) = Elem — EVmIm cos 2wt (1.28)
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PA

0.51mlIm - 0.5T mlmcos 2t

. I ml'rm

0.51 L

T

0 T 2r t
Fig.1.19: Power waveform of pure resistive circuit excited by sinusoidal ac voltage source

From equation (1.28), it is well understood that the first term of the instantaneous power is constant and
time independent. Whereas the second term of the instantaneous power is sinusoidal with a
frequency double the frequency of voltage and current. Fig.1.19 depicts the instantaneous power
of the pure resistive circuit excited by ac voltage source. It is clear from the diagram that it is
periodic function with frequency of 2w or 2f; if the w or f'is the frequency of voltage and current
waveforms. If the time period of the voltage and current waveform is indicated as T then the time
period of the instantaneous power is 0.57. The instantaneous power is positive for every cycle of
it except every interval of @ from w? = 0. The positive instantaneous power indicates that the entire
power is being absorbed by the circuit element (R for this circuit).

Average power:

Average power is the average or mean of the instantaneous power over a complete time period of it. The
unit of average power is also watts (W). The expression of the average power is obtained as,
05T

Pavg = m Jo p(t) dwt

1 05T 1
~ 05T JO [E Vinlm — EVmIm cos 2wt] dwt

Vil VI Vi In
Pavg =5 T3 EXEZ Vimslrms (1.29)

Equation (1.29) can be further re-written by using equation (1.24) as,
o V' 'R _ Vs
w9 2R 2 R

= Ls°R (1.30)
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1.5.2 Pure inductive circuit

Fig.1.20: Pure inductive circuit

A pure inductive circuit of inductance ‘L’ is connected to a sinusoidal ac voltage source of v = V},, sin wt
as shown in Fig.1.20. The phasor form of this voltage is expressed as,

V =V,20° (1.31)
The instantaneous value of the current flowing through the circuit can be obtained as,

. 1 Vn [ .
i(t) = ZJvdt—TJsmwtdt

|/ Vin . Ty . n
=—1 [ coswt] = Hsm (a)t - E) = [, sin (a)t - E) (1.32)

Where, I, = % is the maximum value of alternating current flowing through the circuit. Using the
concept of Table 1.1 in equation (1.31), the current phasor (/) is given by,

v .
I= w—’24—90° = 1,,£—90° = —jI,, = I,,e /%’ (1.33)
The phasor form of voltage across the inductor can be calculated as,
V, =V,20° = I,wL20° (1.34)
In phasor form, the voltage across the inductor denotes anti-clock wise 90° rotation of it w.r.t current
phasor.

1.5.2.1 Phase, impedance and power factor of pure inductive circuit
Phase:

The current and voltage waveforms and their phasor representations are shown in Fig.1.21 and Fig.1.22
respectively based on the equations (1.30) and (1.32). It is clear from both the diagrams and
equations (1.30), (1.32) and (1.33) that the current and voltage in a pure inductive circuit excited
by sinusoidal ac voltage source have a phase difference of 90°. In other word, it can be stated that
the current flowing the pure inductive circuit lags the supply voltage by 90°.
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Fig.1.21: Voltage and current waveforms of pure inductive circuit excited by sinusoidal ac voltage
source

I

~90

Fig.1.22: Voltage and current phasors of pure inductive circuit excited by sinusoidal ac voltage source

Impedance:
The impedance of a pure inductive circuit excited by sinusoidal ac voltage source is given by,

Vi Ym0’ Vm X wL£90° = jwL = jX (1.35)

—_— = = JwL = .

I~ I,2-900 v, "¢ JOR =4

The term wL is known as inductive reactance and it is denoted as X;. Impedance in this type of circuit
depends on the frequency of the supply. If the frequency of supply is zero then the inductive
reactance term becomes zero. In case of DC supply, the frequency is zero that means the inductive
reactance value will be zero. Hence, inductor behaves as a short circuit in DC supply due to the
absence of X;. Admittance in purely inductive ac circuit is calculated as,

yo 1
" jwlL

(1.36)

Power factor:

Power factor (PF) for a pure inductive circuit, which is the cosine of the angle between the current phasor
and voltage phasor is obtained as,

PF = co0s(90%) =0 (1.37)

1.5.2.2 Instantaneous and average power of pure inductive circuit

Instantaneous power:

The expression of instantaneous power for a pure inductive circuit is given by using the equations (1.30)
and (1.31),

p(t) = v(t)i(t) (1.38)
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1
p(t) =V, sinwt X I, sin(wt — —) = —Vl, sinwt coswt = — Elem sin 2wt

1
p(t) = Vindm Sin 2wt (1.39)

PA

(-U.jf milmsin 2t

fole ...-.4.
EF‘},j]—m}m
v Wl
T 3; ‘ >
"{J ." Uf[JU
N.X

Fig.1.23: Power waveform of pure inductive circuit excited by sinusoidal ac voltage source

From equation (1.38), it is clear that the instantaneous power of a pure inductive circuit excited by
sinusoidal ac voltage source is just a sinusoidal with a frequency double the frequency of voltage
and current. Fig.1.23 depicts the instantaneous power of the pure inductive circuit excited by ac
voltage source. It is clear from the diagram that it is periodic function with frequency of 2w or 2f,
if the w or fis the frequency of voltage and current waveforms. If the time period of the voltage
and current waveform is indicated as 7 then the time period of the instantaneous power is 0.5T.
The positive half cycle in instantaneous power indicates that the absorption of power by the
inductor from the source and the negative half cycle in instantaneous power depicts absorption of
power by the source from the charged inductor. That means in one half cycle inductor charges by
absorbing energy from the source and in the next half cycle it throws back the stored energy to the
source by discharging itself.

Average power:

The expression of the average power is obtained as,

0.5T
Pavg = m Jo p(t) dwt

1
T 0.5T

Py = 0 (1.40)

The average power absorption by an inductive element over a time period is zero. This means inductor
does not consume any average power. Fig.1.23 indicates the power only oscillates between source
and inductor (load) and it reacts upon itself. It does not do any useful work. Hence it is known as
watt-less power or re-active power. Reactive power is measured in VAr. From equations (1.35)
and (1.39) the peak value or maximum value of this reactive power is derived as,

A - V2 12X,

|Qm| = TT = Vimslrms = w2 (1.41)

05T
J [ = Vinly sin 2wt] dwt
o 2
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1.5.3 Pure capacitive circuit

T

) @ 4

Fig.1.24: Pure capacitive circuit

A pure capacitor of capacitance ‘C’ is connected to a sinusoidal ac voltage source of v(t) = Vj, sin wt
as shown in Fig.1.24. The phasor form of this voltage is expressed as,

V =V,20° (1.42)
The instantaneous value of the current flowing through the circuit can be obtained as,
dv d(V;, sin wt)
0=C at
= = WCVpy sl 2) = Insi i 1.43
= wCV, coswt = w Vm51n(wt+ E)—Imsm(a)t+ E) (1.43)

Where, I, = wCV,, is the maximum value of alternating current flowing through the circuit. Using the
concept of Table 1.1 in equation (1.43), the current in phasor form (/) is given by,

I = wCV,2+90° = [,,24+90° = jI,,, = I,,e/%"° (1.44)
The phasor form of voltage across the capacitor can be calculated as,
Im

=V 200=-—",0° 1.45

The phasor form of voltage across capacitor denotes clock wise 90° rotation of it w.r.t current phasor.

1.5.3.1 Phase, impedance and power factor of pure capacitive circuit
Phase:

The current and voltage waveforms and their phasor representations are shown in Fig.1.25 and Fig.1.26
respectively based on the equations (1.42), (1.43), (1.44) and (1.45). It is clear from both the figures
(Fig.1.25 and Fig.1.26) and equations (1.42), (1.43), (1.44) and (1.45) that the current and voltage
in a pure capacitive circuit excited by sinusoidal ac voltage source have a phase difference of 90°.
In other words, it can be stated that the current flowing the pure capacitive circuit leads the supply
voltage by 90°.
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T 27 4T i

Fig.1.25: Voltage and current waveforms of pure capacitive circuit excited by sinusoidal ac voltage
source

1y

‘\90” |1k

s

Fig.1.26: Voltage and current phasors of pure capacitive circuit excited by sinusoidal ac voltage source
Impedance:
The impedance of a pure capacitive circuit excited by sinusoidal ac voltage source is given by,

V_ V’"LOO—V’"x14 90° = L iX 1.46
I~ 1,2900 V" wC = Jc T e (1.46)

The term s known as capacitive reactance and it is denoted as X¢. Impedance in this type of circuit

also depends on the frequency of the supply. If the frequency of supply is zero then the capacitive
reactance term becomes infinity. In case of DC supply, the frequency is zero that means the
capacitive reactance value will be infinity. Hence, capacitor behaves as an open circuit in DC
supply due to the very high value of Xc. Admittance in purely capacitive ac circuit is calculated
as,

Y =jwC (1.47)
Power factor:

Power factor (PF) for a pure capacitive circuit, which is the cosine of the angle between the current
phasor and voltage phasor is obtained as,

PF = c0s90° =0 (1.48)

1.5.3.2 Instantaneous and average power of pure capacitive circuit
Instantaneous power:

The expression of instantaneous power for a pure capacitive circuit is given by
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p() = v()i(t) (1.49)
1
p(t) =V, sinwt X I, sin(wt + —) = VI sinwt cos wt = EVmIm sin 2wt
p(t) = =V I, sin 2wt (1.50)

il )

.31 mlmsin 2

Fig.1.27: Power waveform of pure capacitive circuit excited by sinusoidal ac voltage source

From equation (1.50), it is clear that the instantaneous power of a pure capacitive circuit excited by
sinusoidal ac voltage source is just a sinusoidal with a frequency double the frequency of voltage
and current. Fig.1.27 shows the instantaneous power of the pure capacitive circuit excited by ac
voltage source. It is clear from the diagram that it is periodic function with frequency of 2w or 2f,
if the w or fis the frequency of voltage and current waveforms. If the time period of the voltage
and current waveform is indicated as 7 then the time period of the instantaneous power is 0.5T.
The positive instantaneous power indicates that the absorption of power by the capacitor from the
source and negative instantaneous power depicts the absorption of power by the source from the
charged capacitor.

Average power:
The expression of the average power is obtained as,

0.5T
Pavg = m Jo p(t) dwt

1
T 0.5T

Pavg =0 (1.51)

The average power absorption by a pure capacitive element over a time period is zero. As shown in
Fig.1.27, the instantaneous power oscillates between source and capacitor (load) and it reacts upon
itself. It does not do any useful work. From equations (1.46) and (1.50) the different formula of
peak value of this reactive power is derived as,

7 L V2 12X,

|Qm| = TT = Vemslrms = E = 2 (1.52)

In conclusion, it can be stated that the pure resistive load absorbs power from the source but the pure
reactive (pure inductive or pure capacitive) load consumes zero average power.

05T
J [Elem sin 2wt] dwt
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1.5.4. General concept of impedance, impedance triangle and admittance
1.5.4.1 Impedance and impedance triangle

The concept of impedance for pure resistive, pure inductive and pure capacitive circuits are discussed in
the previous sections. But in practice, these elements are connected in different combinations to
form a network. In that case, the impedance is represented as,

Z=R+j(X,—X;)=R+jX=Z|0 (1.53)

1Z| = VRZ + X2 (1.54)

6 = tan? (f) (1.55)
= (an R .

Where R, X;, Xc, X are the effective values of the resistance, inductive reactance, capacitive reactance
and net reactance of the network respectively. If the value of X; is greater than Xc then the
imaginary term of the impedance becomes positive indicating net reactance as inductive reactance
and if the value of X7 is less than Xc then the imaginary term of the impedance becomes negative
indicating net reactance as capacitive reactance. Impedance is measured in ohms (€2).

Impedance angle:

@ is known as impedance angle. It is positive if the net reactance is inductive and it is negative if the net
reactance is capacitive. It is to be noted that impedance angle is phase angle between voltage and
current or power factor angle.

As the impedance is expressed in complex form, so it can be represented in complex plane as shown in
Fig. 1.28.

2
Imaginary
Axis

—
Imaginary

Axis

N=+AL-\p

B

Real Axis

o

Real Axis

X=-(\1-Xo

(a) (b)
Fig. 1.28: Impedance triangle for (a) net reactance as inductive, (b) for net reactance as capacitive
Impedance triangle:

Impedance in complex plane form a triangle which is known as impedance triangle. Impedance triangle
illustrates the relationship between resistance, reactance and impedance. But it is to be remembered
that these quantities are not in phasor form.

1.5.4.2 Admittance

Admittance (Y) is reciprocal of impedance in AC circuits. It is measured in Siemens (S). The expression
for admittance is given by,
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Y_1_ 1 R—jX
" Z R+jX (R+X)R—jX)
R
Y =rix T ripe=CtIB (1.56)

The real part of the admittance is known as conductance (G) and it is measured in mho (U) or Siemens
(S). The imaginary term in the admittance is susceptance (B) and it is measured in mho (O) or
Siemens (S).

Example 1.13. The equivalent resistance, equivalent inductive reactance and equivalent capacitive
reactance of a circuit is given by 10 ohm, 15 ohm and 5 ohm respectively. Find out the equivalent
impedance and admittance of the circuit. Also calculate the impedance angle.

Solution:
We know,
Z=R+j(X,—X;)=R+jX=|Z|.6
R =10 ohm.
X=Xy —-Xc=(15-10) =5 ohm
Impedance is obtained as,
Z =10+ j5 ohm
|Z| = /(10)2 + (5)2 = V125 = 11.18

Impedance angle is calculated as,

5
= -1 ) = 0
6 = tan (10> 26.56

Impedance in polar form is given by,
|Z|£6 = 11.18426.56° ohm
R X 10 . 5 10 . 5
RE+xz2 JRexx2” 102+ (52 ‘oz + (52 125 ‘125
Y =0.08—-,0.04S.

Y =

1.5.5 Concept of power and power triangle

The steady-state voltage-current relationships and concept of power for pure resistive, pure inductive and
pure capacitive are discussed in the previous sections. But in practice, all these passive elements
are connected in different series-parallel combinations. Hence, it is essential to know the concept
of generalized power where a sinusoidal ac voltage source is connected to a load combined with
R, Land C.
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Passive Linear Network
V usin(wt-6,) combined with R, I and C

Fig.1.29: Passive linear network excited by sinusoidal ac voltage source
Let us assume a passive linear network combined with R, L and C is excited by a sinusoidal ac voltage
source with a magnitude of V,, angular frequency of @ and a phase delay of 6, as shown in Fig.
1.29. Due to this voltage source, let us consider a sinusoidal current of magnitude of /,, and phase
delay of 6; is flowing through the circuit. The instantaneous voltage and current waveforms are
indicated in Fig.1.30 and their expressions are given as,

v(t) = Vp, sin(wt — 6,) (1.57)
i(t) = Ly sin(wt —6;) (1.58)

(O]

Fig.1.30: Instantaneous voltage and current waveforms of the circuit mentioned in Fig.1.29

1.5.5.1 Instantaneous power, average power and complex power
Instantaneous power:
The instantaneous power flowing through this circuit is given by

p(t) = v(t)i(t) (1.59)
Equation (1.59) can be modified by using equations (1.57) and (1.58) as,
p(t) =V, sin(wt — 6,) X L, sin(wt — 6;)

1
p(t) = Elem {cos(0; — 6,,) —cos(2wt— 6, — 6,)}
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1
p(t) = Elem {cos(0, — 0;) — cos(2wt— 6, — 6,)}

1 1
p(t) = Elem cos(6, — 9,) —EVmImcos( 2wt— 6, — 6;) (1.60)
Let us consider the phase difference between the voltage and current phasor is 8 = (8, — 6;). Then the
expression of the instantaneous power can be modified as,
1 1
p(t) = > VinLy cOS 8 — EVmImcos( 2wt— 0, —6;) (1.61)

First term of equation (1.61) is time independent and it depends on the cosine of the phase angle
between the voltage and current. As the phase angle between the voltage and current is constant,
the first term is also a constant. The second term is a time varying sinusoidal function. The
frequency of this term is double the frequency of supply voltage and current through the circuit.
Hence the time period of this second term is % second if the time period of the voltage and current

signal is ;n second. If the time period of the voltage and current is denoted as 7T"then the time period
of the second term in the instantaneous power will be 0.57.

PA

.......... i
/ 0.5V,
y

Y
\/:r

L
_____ ___",_.f;,,ﬂ;”;m\/ \/ —»

Fig. 1.31: Instantaneous power of the passive network shown in Fig. 1.29

Fig. 1.31 represents the instantaneous power flowing through the circuit considered. It is clear from the
figure that the average value of this quantity is positive as it has positive values in all the cycles.
The positive value of the power waveform indicates the absorption of power by the load from the
source and the negative power indicates the delivery of power to the source by the load. Power
delivery to the source is possible by discharging inductor or capacitor or both capacitor and
inductor.

Average power:

Instantaneous power is changing w.r.t time. So, it is very difficult to measure it. Rather it is convenient
to measure the average power. Usually, the instrument ‘wattmeter’ is used to measure the average
power in Watts. The expression of the average power for this circuit is obtained as,

05T

Pavg = m Jo p(t) dwt
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1 05T 1 1
Pog = 05T Jo [Elem cos 6 —EVmImcos(Za)t— 6, —06,)dwt

1
Pog = EVmIm cos (1.62)

Equation (1.62) represents the average power flowing through a passive network consists of R, L and C
excited by sinusoidal ac voltage source. In the expression of average power, the second term of the
instantaneous power disappears as it is time varying sinusoidal function. The average power is also
constant and it depends on the phase difference between voltage and current. It is interesting to
note that the instantaneous power is time varying but the average power is time independent. Hence
the calculation of instantaneous power requires the knowledge of instantaneous voltage and
instantaneous current in time domain. But average power can be evaluated in time domain as well
as in frequency domain (in phasor form). The instantaneous voltage and current mentioned in
equations (1.57) and (1.58) are expressed in phasor as,

V= V,46, (1.63)
I= I,26 (1.64)

»Reference

Fig.1.32: Voltage and Current phasors as mentioned in equations (1.63) and (1.64)

One point is to be remembered while calculating the average power in phasor form that the expression
of average power includes the phase difference between the voltage and current phasor.
Considering this, if we take the conjugate of current phasor and multiply it with 0.5 times of voltage
phasor then the expression becomes,

1 1 1

EVI* = Evméev X l[,4—6; = ElemL(H,, — 91)

1 1 .

EVI =5 Viplm[cos(8, — 6;) + jsin(6, — 6;)]

1 1

EVI* =3 Vinlm[cos 8 + jsin 0] (1.65)

The real term of the above equation is the average power flowing through a passive network consists of
R, L and C excited by sinusoidal ac voltage source. So, it can be concluded that the real part of the
equation (1.65) is the average power, which can be expressed as,

Pavg = Re[ZVI'] = SViyly cos 6 (1.66)
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When voltage and current are in phase, i.e. 8 = 0 then the circuit becomes pure resistive circuit. In that
case, the average power becomes,
1 V.2 L,*R |VI2 |I|?R

Pavg = EVmIm = ﬁ= > = 2R = > (167)

Where |V]and |I| are the absolute values of voltage and current phasors respectively. When the phase
difference between the voltage and current phase is 90, i.e. § = +90° then the circuit becomes
either pure capacitive or pure inductive. In that case, the average power becomes,

Py = 0 (1.68)

Equations (1.67) and (1.68) again conform that the pure resistive circuit consumes power and pure
inductive or capacitive circuit does not consume any average power. These satisfy the concept
discussed in equations (1.30), (1.40) and (1.51).

Complex power:

Equation (1.64) includes one real term as well as one imaginary term. This is the total power or apparent
power consumed by any passive network consists of R, L and C excited by sinusoidal ac source.
As it is expressed in complex form, it is also known as complex power. It is measured in Volt-
Ampere (VA) and usually denoted as “S’. The expression of total power or apparent power or
complex power is given by,

1 1
S = EVI* =3 Vinlm[cos 8 + jsin 0] (1.69)

In terms of rms values the complex power is expressed as,

S= rmsIrms - |Vrms||1rms|[cose +] sin 9] (170)
Where the rms values of voltage and current in phasor forms are as follows,

Vin

Vims = \/— \/—49 = [Vins| 26, (1.71)
I )

Lons = \/_ \/_49 = |Lms|20; (1.72)

Real power or active power:

It is already discussed that the real part of equation (1.69) or (1.70) is the average power consumed by
the circuit. As it is the real part of the equation, it is also known as real power or true power. It
involves in active work done so sometimes it is also termed as active power. It is the useful power
consumed or dissipated by the load. It is measured in Watts and denoted as P. Real power is
consumed by resistive element of the circuit. Inductive or capacitive element does not consume
active power.

P = Re[S] = Re [1

1
5 v ] I, cos 0 = Vol Lms| cOs O (1.73)

2 m
Reactive power:

The imaginary part of the equation (1.69) or (1.70) is the reactive power of the circuit. It is the measure
of power exchange between the source and reactive part of the network. This power transfers back
and forth between the source and reactive part of the circuit. The reactive power in a pure resistive
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circuit is zero. Whatever power is transferred to the reactive elements by the source in one half
cycle, the same is thrown back to the source from those reactive elements in the next half cycle. It
is known as reactive power as it reacts upon itself by lossless interchanging of power. It is measured
in VAr and denoted as Q.

1 1
Q = Im[S] = Re [EVI*] = Elem sin@ = |Vl Lms| sin 6 (1.74)

The expression of total power or apparent power is mentioned in terms of active power and reactive
power as follows.

S=P+jS (1.75)
IS| = VP2 + Q2 = [Vis | | Lrms | (1.76)

Power factor can also be calculated by apparent power and active power as,

PF = g = P Active Power 177
- sv=Eg= Apparent Power (1.77)
Impedance can be evaluated by using equations (1.63), (1.64), (1.71) and (1.72) as,
V. Vb,  Vn [Vems 26y [Vims!
=—-—=—=—/,(6,—-0)) = = 2(6,—6; 1.78
S L T T e (1.78)
As the phase angle (6, — 6;) is already denoted as 6, then the equation (1.78) is modified as,
v v
Z= 1—’"49 = ||1Tms|| 20 =17Z|20 =+/R2 + X220 = R +jX (1.79)
m rms

Where R and X are effective or equivalent resistance and reactance of the network considered in Fig.
1.29. By comparing equations (1.17) and (1.79), R and X can be expressed as,

R = |Z|cos 6 (1.80)
X = |Z|sin@ (1.81)

From the equations (1.73), (1.74), (1.80) and (1.81) the active, reactive power and apparent power can
also expressed as,

|Vrms| 2 |Vrms|2

P = |Vrms||1rms|C059 = Wllrmis = |Irms| R= T (182)
. [Vims| Vs |?

Q= |Vrms”1rms|51n9 = (;ls |Irms|X = |Irms|2X = % (183)
%4 2

1= VPTT Q7 = Ul PVFET X2 = Ihaf?i2] = 22 (184)

Example 1.14. The voltage across a circuit is given by/20 sin(100 = ¢t + 30°) V. The current through the
circuit is 5 sin(100 = t + 45°) A. Find out the active power, reactive power, apparent power and
power factor.

Solution:
V =120230°
| = 5245°



34 | Electric Circuits and Networks

Power factor angle is given by,

6 =—15°

Active power is given by,

1
P= 7 X 120 x 5 X cos(—15°) = 289.77 W

Reactive power is calculated as,

1
Q= 7 X 120 x 5 x sin(—15%) = —77.645 VAr

Total power and apparent power is given by,
S =289.77 — j77.645 VA
Power factor is obtained as,
PF = cos(—15%) = 0.966 leading

1.5.5.2 Power triangle

The total power is expressed in complex form and it can be represented in complex plane. The
relationships between the active power, reactive power and total or apparent power are shown in
Fig.1.33. It forms a triangular shape that is why it is known as power triangle.

.+
Imagina r}'“

Axis

+0 =+ |Lm|’X

e

P=|lm’R

(@)

L

Real Axis

.+
Imaginary *

Axis

=\

/

P=|Iml'R

-

S= | I 2

(b)

-

Real Axis

-0=- ”murlz‘\‘

Fig.1.33: Power triangle for (a) positive reactive power, (b) for negative reactive power

When the phase angle (6 = 6, — 6;) between voltage and current is positive, the reactive power is
positive. Positive phase angle is possible when current lags the voltage i.e in a circuit with a
dominance of inductive reactance. During this time the PF is lagging. On the other hand, reactive
power is negative in a circuit where capacitive reactance is dominating. During this time, current
lead the supply voltage and PF'is leading. Equation (1.79) and comparison of Fig.1.28 and Fig.1.33
also confirm that the impedance angle is the phase angle between the voltage and current as
discussed in section 1.5.4. Another interesting fact is to be noted that if all the sides of impedance
triangle is extended by |L.s> times without altering their direction then it will become power

triangle.
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1.6 Steady state response of series circuits for a sinusoidal ac voltage
source

In this section, the steady state response of networks consist of different series combinations of R, L and
C excited by sinusoidal ac voltage source are discussed.

1.6.1 R-L series circuit
L

AA—

le— 12— —>

v(t) = 1, sinomt @

Fig. 1.34: Series R-L circuit

A circuit consists of series combination of pure resistor (R) and pure inductor (L) is connected to a
sinusoidal ac voltage source of v(t) = V,, sin wt as shown in Fig.1.34. The phasor form of the
supply voltage is expressed as,

V =V, 20 (1.85)

The phasor form of voltage across R and L are mentioned as V' and V7 in Fig.1.34. Applying the concept
of phasor sum the relation between V, V' and V7 is given by,

Fig. 1.35: Voltage and current phasors of series R-L circuit

The phasor sum of all the voltages are also represented in Fig.1.35. Using the concept mentioned in
equations (1.24) and (1.34), the above equation can be modified as,

V=IR+ jIX, (1.87)
V=IR+jX)=1Z (1.88)
Where the impedance Z is given by,



36 | Electric Circuits and Networks

Z=\Z|46 (1.89)

|Z| = /RZ +X,2 (1.90)
X wlL

_ —1(2L) -1 (22 1.91

6 = tan (R) tan (R) (1.91)

This impedance angle is also power factor angle for this circuit. The value of current flowing through the
circuit can be found out by using equations (1.85), (1.88) and (1.89) as,
Vo V,200 (Vm

m) L—0=1,.-6 (1.92)

. (Y . . o
Where, 1, is (ﬁ) Hence the instantaneous value of the current flowing through the circuit is as follows,

i = I, sin(wt — 0) (1.93)

Fig. 1.36: Waveforms of supply voltage and current of series R-L circuit

The relation between instantaneous value of voltage and current is represented in Fig.1.36. Fig.1.36 and
equations (1.85) and (1.92) clearly depict that the current through a series R-L is lagging the supply
voltage by an angle of § (impedance angle or power factor angle).

The instantaneous power flowing through the series R-L circuit is obtained by using (1.61) as follows,
1 1
p(t) = > Vil cOs 8 — > Vindmcos( 2wt — 6) (1.94)

The first term of equation (1.94) is the active power or average power and it is given by,

|VR,rms |2

R

The second term of the instantaneous power is a time varying sinusoidal whose average value over a
complete cycle is zero. It represents only charging of inductor in one half cycle and discharging of
it in the next half cycle by pumping the power back to the source. This circulating power reacts
upon itself and it is known as reactive power. It is the measure of oscillating power between the
source and inductive reactance. The reactive power of the circuit in different forms are expressed
as,

1
P= Elem c0s 8 = |Vips|lrms| cos 8 = |L|?R = (1.95)
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2
1 . . Vy,
Q = 5 Vi SN0 = Wi | s | $in 0 = |Lrys|2X, = % (1.96)
The reactive power for a series R-L circuit is positive and it represents the lagging reactive power as
indicated in Fig.1.33 (a). The expression of total power or apparent power for the series R-L circuit

is mentioned as follows,

1 1
S = EVI* =3 Vinlm[cos 8 + jsin 0] (1.97)
S=P+jQ (1.98)
1 s Vimsl?
IS| = VP*+ Q% = EVmIm = Vems | rms| = |Lms|?Z = T (1.99)
-
Imaginary

AXis
O =+ |Lms’Xz

= g
P=|lml| R Real Axis

-V
Fig. 1.37: Power triangle for a series R-L circuit

The power triangle for this circuit is presented in Fig.1.37. The power triangle and equation (1.96)
confirm the positive and lagging reactive power and positive power factor angle.

Power factor can also be calculated by apparent power and active power or resistance and impedance as,

PF = 6= P_K 1.100
=cosf === (1.100)
The power factor for a series R-L circuit is lagging in nature. It can also be evaluated from voltage phasors

as indicated in Fig.1.35 as,

Ve
PF = cosf = v (1.101)
Example 1.15. A series R-L circuit is connected to 23020° V, 50Hz AC supply. It draws a total current

4 -j3 A. Find out the active power, reactive power and apparent power.

Solution:
V = 230200
I=4—j3A=+16+92tan™? (%) = 5,-36.86°

AC quantities are specified in terms of rms value. Hence the voltage and current given are in rms values.
Active power is given by,
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P =230 x5 X cos(0° — (—36.86%)) =920.12 W
Reactive power is calculated as,

Q =230 x 5 X sin(0° — (—36.86°)) = 689.84 VAr
Total power and apparent power is given by,

§ =1920.12 4+ j689.84 VA

Example 1.16. A practical coil connected to a 230V, 50Hz supply consumes 6 A while dissipating 500
W across it. Find the value of current drawn by the coil if the supply frequency changes to 60 Hz
from 50 Hz.

Solution:

Practical coil includes an inductor along with a small series resistor. Hence, the coil can be modelled as,

Z=R+jX,
Vs = 230V
Lrms = 6A

230
|Z| = T = 38.33 ohm
P = |Irms|2R
500 = (6)% X R

R—500—1389 h
=3¢ — 1389 0hm

|Z] = 38.33 = /(13.89)2 + X2

1469.189 = 192.93 + X, *
X, = 35.724 ohm
X, = 2nfL

35.724

T 2x314 x50

The inductive reactance changes with the change in frequency. Now the new reactance at 60 Hz is
calculated as,

Xy new = 21fL = 2 X 3.14 x 60 x 0.1137 = 42.86 ohm
|Z niew| = +/(13.89)% + (42.86)2 = 45.05 ohm

=0.1137H

6 =tan?! (@> = 72.04°
13.89
[V 0°

I=1,20 =7.224—-72.04°A

T 1Z]472.04°



Electric Circuits and Networks | 39

1.6.2 R-C series circuit

R C
Il

W
|e— 1 —>|— ’|’|C—>|

v(t) = Vsinot m
O

Fig. 1.38: Series R-C circuit

A circuit consists of series combination of pure resistor (R) and pure capacitor (C) is connected to a
sinusoidal ac voltage source of v(t) = V,, sin wt as shown in Fig.1.38. The phasor form of the
supply voltage is expressed as,

V =1V,20° (1.102)
The phasor form of voltage across R and C are mentioned as 'z and V¢ in Fig.1.38. Applying the concept
of phasor sum the relation between V, V' and V7 is given by,

Fig. 1.39: Voltage and current phasors of series R-C circuit

The phasor sum of all the voltages are also represented in Fig.1.39. Using the concept mentioned in
equations (1.24) and (1.45), the above equation can be modified as,

V=1IR— jIX, (1.104)

V=IR-jX)=1Z (1.105)
Where the impedance Z is given by,

Z =|Z|,6 (1.106)

|Z] = /RZ + X2 (1.107)

X, -1
_ (X L 1.108
6= tan ( R ) tan (Ra)C) (1.108)
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From equations (1.106) and (1.108), it is clear the impedance angle for a series R-C circuit is negative.
The value of current flowing through the circuit can be found out by using equations (1.102),

(1.106) as,
Vv V,20° Vi
=== ——+—=|— |20 =120 1.109
! Z |Zl-#6 (lzl) m ( )

. (Y . . o
Where, 1, is (ﬁ) Hence the instantaneous value of the current flowing through the circuit is as follows,

i = L, sin(wt + 6) (1.110)

!

Fig. 1.40: Waveforms of supply voltage and current of series R-C circuit

The relation between instantaneous value of voltage and current is represented in Fig.1.40. Equations
(1.102) and (1.109) and Fig. 1.40 present that the current in a series R-C circuit is leading the
supply voltage by an angle of & (impedance angle or power factor angle).

The instantaneous power flowing through the series R-C circuit is obtained by using (1.61) as follows,
1 1
p(t) = Elem cos(—8) —Elemcos(Zwt +6) (1.111)

The first term of equation (1.111) is the active power or average power and it is given by,

2
|VR,rms|
R

The second term of the instantaneous power is a time varying sinusoidal whose average value over a
complete cycle is zero. It represents only charging of the capacitor in one half cycle and
discharging of it in the next half cycle by pumping the power back to the source. This reactive is
the measure of oscillating power between the source and capacitive reactance. The reactive power
of the series R-C circuit in different forms are expressed as,

1
P= EVmIm €05 0 = [Vips| | Lrms| cos 0 = |Lns|?R = (1.112)

1 1
Q= Elem sin(—0) = _Evmlm sin 6 (1.113)
2
_ |VX,rms|

Q= _lvrmslllrmsl sinf = _llrmslzxc = X
c

(1.114)
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Equations (1.113) and (1.114) show that the reactive power is negative. It is because of negative
impedance angle or negative and leading power factor angle. This reactive power is the leading
reactive power. The expression of total power or apparent power for the series R-C circuit is
mentioned as follows,

S=P—jQ (1.115)
1 [Vms |2
IS| = \/PZ +Q%= EVmIm = [Vims | | Irms| = |Irms|2Z = ﬂ;s (1.116)
Imaginary
Axis
P =|Im’R

-
Real Axis

0=- |Irms|2-XC

L= Lol
-y

Fig. 1.41: Power triangle for a series R-C circuit

The power triangle for this circuit is presented in Fig.1.41. The power triangle also represents the negative
and leading reactive power and negative power factor angle.

Power factor can also be calculated by apparent power and active power or resistance and impedance as,

PF = 0) = PR 1.117
= cos(-0) == 7 (1.117)
The power factor for a series R-C circuit is leading in nature. It can also be evaluated from voltage phasors

as indicated in Fig.1.39 as,

Vi
PF = cos(—0) = v (1.118)

Example 1.17. A series R-C circuit is connected to a 220V, 50Hz supply. The resistor dissipates 250W
at 110V. Find the value of C and calculate the maximum energy stored by the capacitor.

Solution:

V =220 x v22£0°
The formula for active power in terms of voltage and resistance is given by,
2
_ [Vrrms|®

P
R
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_ 4107 48.4 oh
=gy = 184 0hm
The formula for active power in terms of current and resistance is given by,
P= |1rms|2R

I .= P_ 250—516A
ms = IR 484 7

V| = [V2 — Vy? = V96800 — 24200 = 269.44V

As it is series circuit, the same current is flowing through the capacitor also. So,
Vel = 1X¢

269.44 = (5.16 X V2) x

1
2nfC
C =8.62%X107°F
Maximum energy stored in capacitor is given by,

ClVe|?
E =———=13.129 Joule

Example 1.18. A series R-C circuit is connected to a /70 sin(100 m t + 30°) V supply and current flowing
through the circuit is 20 sin(100 = t + 60°) A. Find the power factor, active power and reactive
power.

Solution:
V =110230°
1 =20260°
Power factor is given by,
PF = cos (0, — 0;) = cos(—30°) = 0.866 (leading)

Active Power is given by,
1
P = EVmIm cos(—30%) = 110 x 20 x 0.866 = 1905.25W
Reactive Power is given by,

1
Q = 5Vl 5in(=30°) = ~110 X 20 X 0.5 = ~1100VAr

1.6.3 R-L-C series circuit

A circuit consists of series combination of pure resistor (R) , pure inductance (L) and pure capacitor (C)
is connected to a sinusoidal ac voltage source of v(t) = V,, sin wt as shown in Fig.1.42.
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R L C
WAL
"

1| — T —e1 . >

v(t) = I, sinwt @

Fig. 1.42: Series R-L-C circuit
The phasor form of the supply voltage is expressed as,
V =1V,20° (1.119)

The phasor form of voltage across R, L and C are mentioned as Vi, V' and V¢ in Fig.1.42. Applying the
concept of phasor sum the relation between V, Vg, V. and V¢ is given by,

The series R-L-C circuit is analysed here by considering two conditions. First one is X;>Xc and second
one is X, <Xc.

Condition 1: X;>X¢

Fig. 1.43: Voltage and current phasors of series R-L-C circuit for X;>Xc

The phasor sum of all the voltages for this condition are represented in Fig.1.43. Using the concept
mentioned in equations (1.24), (1.34) and (1.45) the equation (1.120) can be modified as,

V=IR+ jIX, — X¢) (1.121)
V=IR+jX,—X;) =IR+jX)=1Z (1.122)

WhereX; — X = X. Value of net reactance i.e X is positive as X;>Xc. Considering net reactance as
positive the impedance Z is given by,

Z=\Z|26 (1.123)

|Z| = R? + (X, — X;)? (1.124)
X, — X,

6 = tan—l( L C) (1.125)
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As, X;>Xc, the impedance angle for this condition of a series R-L-C circuit is positive. The value of
current flowing through the circuit can be found out as,
V1,200 (Vm

m) L—0=1,.-0 (1.126)

=7 1Zlze ~

. (Y . . o
Where, 1, is (ﬁ) Hence the instantaneous value of the current flowing through the circuit is as follows,

i = I sin(wt —0) (1.127)

Fig. 1.44: Waveforms of supply voltage and current of series R-L-C circuit for X;>Xc

The relation between instantaneous value of voltage and current is represented in Fig.1.44. Equations
(1.119) and (1.126) and Fig. 1.44 present that the current in a series R-L-C circuit is lagging the
supply voltage by an angle of 6 (impedance angle or power factor angle), if X;>Xc.

The instantaneous power flowing through this circuit is obtained by using the concept of equation (1.61)
as follows,

1 1
p(t) = > Vinlm cos(6) — Elemcos( 2wt — 0) (1.128)
The first term of equation (1.128) is the active power or average power and it is given by,
1 V. 2
P = 5Vl €050 = [Vins|llrms| c0s 0 = |Lrms|*R = % (1.129)

The second term of the instantaneous power is a time varying sinusoidal whose average value over a
complete cycle is zero. It represents only charging of the inductor and capacitor in one half cycle
and discharging of them in the next half cycle by pumping the power back to the source. This
power is the reactive power which is the measure of oscillating power between the source and
capacitive reactance. The reactive power of the series R-L-C circuit for X;>X¢ in different forms
are expressed as,

1
Q= EVmIm sin @ = |Vl s Sin 6 (1.130)
|Vems |
(X, —Xc)
Equations (1.130) and (1.131) show that the net reactive power is positive as X;>Xc. This net reactive

power is lagging reactive power. The expression of total power or apparent power for the series R-
C circuit for X;>X¢ is mentioned as follows,

Q= |Irms|2(XL —-Xc) = (1.131)
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S=P+jQ (1.132)
1 (Vs |?
IS] = \/PZ + Qz = EVmIm = |Vrms||1rms| = |Irms|2Z = % (1133)
. +
Imaginary

Axis
Q =+ L (X1-Xo)

> -
P=|Im|"R  Real Axis

-y
Fig. 1.45: Power triangle for a series R-L-C circuit for X;>Xc

The power triangle for this circuit is presented in Fig.1.45. The power triangle also represents the positive
and lagging net reactive power.
Power factor can also be calculated by apparent power and active power or resistance and impedance as,
P R

= === — 1.134
PF = cos $=7 ( )

The power factor for a series R-L-C circuit for X;>Xc is lagging in nature. It can also be evaluated from
voltage phasors as indicated in Fig.1.43 as,

Vi
PF = cosf = v (1.135)

Condition 2: X7 <Xc¢
The phasor sum of all the voltages for this condition are represented in Fig.1.46.

Fig. 1.46: Voltage and current phasors of series R-L-C circuit for X;<X¢

Using the concept mentioned in equations (1.24), (1.34) and (1.45) the equation (1.120) can be modified
as,
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V=IR+ jIX, — X¢) (1.136)
V=IR+jX,—X;)=IR—jX)=1Z (1.137)

WhereX; — X, = X. The value of net reactance i.e X is negative as X;<Xc which is also indicated in
equation (1.37). Considering net reactance as negative, the impedance Z is given by,

VACRVAVA?) (1.138)
|Z] = R?2 + (X, — X;)? (1.139)
X —X L
_ -1 (2L c\ _ -1
6 = tan ( R ) tan (RC) (1.140)

As, X;<Xc, the impedance angle for this condition of a series R-L-C circuit is negative. The value of
current flowing through the circuit can be found out as,

Vo V00 (Vm

I= )49 = 1,26 (1.141)

Z " 1Zlz—6 ~ \Iz|
Where, 1, is (‘I%ml) Hence the instantaneous value of the current flowing through the circuit is as follows,
i = L, sin(wt + 6) (1.142)
v, i

Fig. 1.47: Waveforms of supply voltage and current of series R-L-C circuit for X;<Xc

The relation between instantaneous value of voltage and current as well as the relation between the phasor
form of voltage and current is represented in Fig.1.47. Equations (1.119) and (1.142) and Fig. 1.47
present that the current in a series R-L-C circuit is leading the supply voltage by an angle of &
(impedance angle or power factor angle), if X;<Xc.

The instantaneous power flowing through this circuit is obtained by using the concept of equation (1.61)
as follows,

1 1
p(t) = > Vinlm cos(—0) — > VinImcos(2wt + 6) (1.143)
The first term of equation (1.143) is the active power or average power and it is given by,
1 Vims |2
pP= EVmIm c0s 8 = |Vips | Irms| cos 6 = |Irms|2R = % (1.144)
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The second term of the instantaneous power is a time varying sinusoidal whose average value over a
complete cycle is zero. It represents only charging of the inductor and capacitor in one half cycle
and discharging of them in the next half cycle by pumping the power back to the source. This
power is the reactive power which is the measure of oscillating power between the source and
capacitive reactance. The reactive power of the series R-L-C circuit for X;<Xc in different forms
are expressed as,

1
Q == Vinln SN0 = —[Vyys|| Ly | sin 6 (1.145)

|Vims |2 |Vims |2
Q = |Irms|2(XL _XC) = _llrmslzx = (XLWZSXC) == T;S

Equations (1.145) and (1.146) show that the net reactive power is negative as X;<Xc. This net reactive
power is leading reactive power. The expression of total power or apparent power for the series R-
C circuit for X;<Xc is mentioned as follows,

(1.146)

S=P—jQ (1.147)
1 Vs |?
IS| = \/Pz +Q? = EVmIm = |Vems | Lrms| |Irms|2Z = % (1.148)

The power triangle for this circuit is presented in Fig.1.48. The power triangle also represents the negative
and leading net reactive power.
Power factor can also be calculated by apparent power and active power or resistance and impedance as,
P R
PF = cosf = A (1.149)
The power factor for a series R-L-C circuit for X;<Xc is leading in nature. It can also be evaluated from
voltage phasors as indicated in Fig.1.43 as,

Vi
PF = cosf = v (1.150)

.t A
Imaginary
Axis

P=|Im’R

>
Real Axis

O =- I ’X

S= s’

-y
Fig. 1.48: Power triangle for a series R-L-C circuit for X;<Xc

Example 1.19. A coil is connected in series with a practical capacitor. The coil inductance and resistance
are 0.1H and 5 ohm respectively. The equivalent impedance of the circuit is given by 6+j5 ohm. If
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the supply voltage for this circuit is single phase, 230V, 50Hz then find the impedance of the
practical capacitor.

Solution:

The practical capacitor includes one capacitor in series with a small resistance. Hence the impedance of
the practical capacitor becomes,

Zc =R —jX; ohm

Reactance of the coil is given by,
X, =2%x3.14%x50x%x0.1=31.40hm

The equivalent impedance of the circuit is given by,
Zeqg =6+j5=(5+Rc)+j(31.4—X;) ohm

Comparing the real and imaginary term of the above equation the value of the impedance of the capacitor
is obtained as,

Zc=1-—j26.4 ohm

1.7 Steady state response of parallel circuits for a sinusoidal ac voltage
source

In this section, the steady state response of networks consist of different parallel combinations of R, L
and C excited by sinusoidal ac voltage source are discussed.

I R f § Ll
v(t) =1 ,sinwt T T
@ Iz Ry L

1.7.1 R-L parallel circuit

Fig. 1.49: Parallel R-L circuit

A circuit consists of parallel combination of pure resistor (R) and pure inductor (L) and excited by a
sinusoidal ac voltage source of v(t) = V,, sin wt as shown in Fig.1.49. The phasor form of the
supply voltage is expressed as,
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V =1V,20° (1.151)

The phasor form of voltage across R and L are same as supply voltage as they are in parallel. The voltage
across R and L are mentioned as Vr and V; in Fig.1.49. The relation between V, Vr and V7 is given
by,

-'Ir

1 I

Fig. 1.50: Voltage and current phasors of parallel R-L circuit

As R and L are in parallel, the input current is divided in to two branches as shown in Fig.1.49. The
phasor sum of the current flowing through R and L are shown in Fig.1.50. Their relation is
mentioned in the equation below as,

If the equivalent impedance of this circuit is taken as Z, the equation (1.153) is modified by putting the
values of currents from equation (1.152) as,

Vv v %
—=_R_;L (1.154)
Z R wL

As the values of voltage across all the elements are same as supply voltage then the impedance of the
circuit is given by,

1 1

1

—==—j— 1.155

Z R wlL ( )
11,2 1.156

RjX
7=-—T"L (1.157)
R +jX,
Separating the real and imaginary term of equation (1.157), it becomes,
Z= RX,” +j REX, (1.158)
TR+ x? TRt x,2 '
Z =|Z|,6 (1.159)
2 2
RX,? R2X
1Z] = )+ L (1.160)
R2+ X, R2 + X,

R R
(B (R 1161
0 tan (XL) tan ((,OL) ( )
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The value of total input current flowing through the circuit can be found out by using equations (1.151)
and (1.159) as,

V V200 Vi
=Z=W=(m>4—9=1m4—9 (1.162)
Where, I, is (‘I/Z_ml) Hence the instantaneous value of the input current flowing through the circuit is as
follows,
i = I sin(wt —0) (1.163)

-
i-ﬁ T 2 ]

Fig. 1.51: Waveforms of supply voltage and current of parallel R-L circuit

The relation between instantaneous value of supply voltage and current is presented in Fig.1.51. Fig.1.51
and equations (1.151) and (1.162) clearly depict that the input current through a parallel R-L is
lagging the supply voltage by an angle of § (impedance angle or power factor angle).

The active power or average power of this circuit is consumed by only R and it is given by,

2
|VR,rms|
R
Ig yms and Vg ms are the rms value of current through R and rms value of voltage across R. Similarly, the

reactive power is only associated with reactive elements. Here, the reactive power oscillates
between the inductor and source and its value is given by,

1 2
P = Viulm cos 6 = Vms | | sl €080 = |Ig rms| R = (1.164)

2
1 _ . 2 Vi,
Q= EVmIm Sin 0 = Vo[ [rms| sin @ = |IL,rms| X, = % (1.165)
L
11, yms and Vi ms are the rms value of current through L and rms value of voltage across L. The expression
of total power or apparent power for the parallel R-L circuit is mentioned as follows,

S=P+jQ (1.166)

1 [Vyms |2
IS] = \/PZ + Qz = EVmIm = |Vrms||1rms| = |Irms|2Z = ﬂ;s

The power triangle for this circuit is presented in Fig.1.52. The power triangle confirms the positive and

lagging reactive power and positive power factor angle. Power factor can also be calculated by
apparent power and active power or resistance and impedance as,

(1.167)
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P
PF = cos@ = 0 (1.168)

The power factor for a series R-L circuit is lagging in nature. It can also be evaluated from current phasors
as indicated in Fig.1.50 as,

Ig
PF = cosf = T (1.169)

- \
Imaginary
Axis
2
L

> -
P=|Ig ms|’R Real Axis

-v
Fig. 1.52: Power triangle for a parallel R-L circuit

Example 1.20. A resistor of 50 ohm is connected in parallel to a 2H inductor. This parallel circuit is
connected to a 220V, 50 Hz single phase sinusoidal voltage supply. Find the active power
dissipated in the resistor and reactive power in the inductor branch.

Solution:
Current through the resistor is given by,

220
IR = ﬁ =44A
Current through the inductor is given by,
220 220

The active power dissipated in the resistor is given by,
P =Iprms°R = (4.4)% X 50 = 968 W

The reactive power in the inductor is given by,
Q = I yms’X, = (0.35)2 X 628 = 76.93 VAr

1.7.2 R-C parallel circuit

A circuit consists of parallel combination of pure resistor (R) and pure capacitor (C) and excited by a
sinusoidal ac voltage source of v(t) = V}, sin wt as shown in Fig.1.53.
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I‘q 1(‘

Fig. 1.53: Parallel R-C circuit
The phasor form of the supply voltage is expressed as,
V =V,20° (1.170)

The phasor form of voltages across R and C are same as supply voltage as they are in parallel, the voltage
across R and C are mentioned as V'z and V¢ in Fig.1.53. The relation between V, Vz and V¢ is given

by,
V=Vy=IR=V, = e (1.171)
wC
I
Ic
0
— >

Fig. 1.54: Voltage and current phasors of parallel R-C circuit

As R and C are in parallel, the input current is divided in to two branches as shown in Fig.1.53. The

phasor sum of the current flowing through R and C are shown in Fig.1.54. Their relation is
mentioned in the equation below as,

=1+ I (1.172)
If the equivalent impedance of this circuit is taken as Z, then the equation (1.172) is modified by the
putting the values of currents from equation (1.171) as,
Vv Vg .
7R +jVewC (1.173)

As the values of voltage across all the elements are same as supply voltage then the impedance of the
circuit is given by,
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1 1
7-R +jwC (1.174)
1 1 1
E=E+]X_C (1.175)
The value of Z in complex form is obtained as ,
R ~ wCR?
Z=1+a)2C2R2_]1+a)2C2R2 (1.176)
Z=1Z|.8
R 2 wCR? \?
|Z| = (1 T a)ZCZRZ) + "1+ w2C2R? (1.177)
1
0 = tan"(—wC) = tan™?! (— X_) (1.178)
c

It is clear from equation (1.178) that the impedance angle is negative. The value of total input current
flowing through the circuit can be found out by using equations (1.170) and (1.176) as,

% V;,20° (Vm

1Z|

= —_= """ 20 =1_¢,0 1.179
Z |Z|2—-wc ) m ( )

Where, I, is (ﬁ) Hence the instantaneous value of the input current flowing through the circuit is as
follows,

i = L, sin(wt + 6) (1.180)

v, ik

Fig. 1.55: Waveforms of supply voltage and input current of parallel R-C circuit

The relation between instantaneous value of supply voltage and input current is presented in Fig.1.55.
Fig.1.55 and equations (1.170) and (1.179) clearly depict that the input current through a parallel
R-C is leading the supply voltage by an angle of 6 (impedance angle or power factor angle).

The active power or average power of this circuit is consumed by only R and it is given by,
2
|VR,rms|

- (1.181)

1 2
P = EVmIm 05 0 = |Vins||rms| cos 0 = |IR,rms| R =
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Ig ms and Vg s are the rms value of current through R and rms value of voltage across R. Similarly, the
reactive power is only associated with reactive elements. Here the reactive power oscillates
between the capacitor and source and its value is given by,

1 _ _ 2 [Vims |2
Q= _EVmIm sin@ = —|Veps| | [rms| sin @ = _llc,rmsl Xc = _;(—YT(I:S (1.182)
The expression of total power or apparent power for the parallel R-C circuit is mentioned as follows,
p
S=P—jQ (1.183)
2 2 1 2 |Vrms|2
IS| = VP2 + Q% = EVmIm = Voms |/ rms| = |rms|*Z = 7 (1.184)

The power triangle for this circuit is presented in Fig.1.56. The power triangle confirms the negative and
leading reactive power and negative power factor angle.

Power factor can also be calculated by apparent power and active power as,

P
PF = cos@ = 0 (1.185)

The power factor for a parallel R-C circuit is leading in nature. It can also be evaluated from current
phasors as indicated in Fig.1.54 as,

Ig
PF = cosf = T (1.186)

Imaginary
Axis

P=|Ig m’R

Real Axis
lQ =- |IC, rms|2){C

S= 7 ,ms|

-Y

Fig. 1.56: Power triangle for a parallel R-C circuit

Example 1.21. A resistor of 10 ohm is connected in parallel to a 20uF capacitor. This parallel circuit is
connected to a 200V, 50 Hz single phase sinusoidal voltage supply. Find the total current flowing
through the circuit and equivalent impedance of the circuit.

Solution:
Current through the resistor is given by,

_200V2

I T =20V2 A
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Current through the capacitor is given by,
200v2 200vV2 1
le=i—x—=J1g923 = /1774 Xc = ]
I =1z +1.=2828+1.77 = 28.3323.58° 4

Impedance of the circuit is given by,

1% 200v2

~ T~ 283323580
1.7.3 R-L-C parallel circuit

=9.982-3.58° ohin

A circuit consists of parallel combination of pure resistor (R), pure inductor (L) and pure capacitor (C)
and excited by a sinusoidal ac voltage source of v(t) = V,, sin wt as shown in Fig.1.57.

1

Ip I Ic

@ ;

Fig. 1.57: Parallel R-L-C circuit
The phasor form of the supply voltage is expressed as,
vV ="V,20° (1.187)
The phasor form of voltage across R, L and C are same as supply voltage as they are in parallel. The
voltage across R, L and C are mentioned as Vg, V' and V¢ in Fig.1.57. The relation between V, Vi
Vi and V¢ is given by,
—Jlc
wC
As R, L and C are in parallel, the input current is divided in to three branches as shown in Fig.1.57. Their
relation is mentioned in the equation below as,

If the equivalent impedance of this circuit is taken as Z, then the equation (1.189) is modified by the
putting the values of currents from equation (1.188) as,

V= VR =IRR=VL =]IL(1)L=VC= (1188)
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7= — it iVeaC (1.190)

As the values of voltage across all the elements are same as supply voltage then the impedance of the
circuit is given by,

1 1 1
7 ZE_]H—H(DC (1.191)
1 1 /1 1
7 =E+] (X_C_X_L> (1.192)
The value of Z in complex form is obtained as,
7 - w?L?R i wLR?*(1 — w?LC) (1193)
R?2(1 — w?LC)? + w?L? ~R?(1 — w?LC)? + w?L? )
Z=1Z|.6 (1.194)
J w2I2R 2 wLR2(1 — w2LC) \
|Z] = + (1.195)
<R2(1 —w?LC)? + w2L2> <R2(1 —w?LC)? + w2L2>
If the equation (1.195) is simplified then then it becomes,
w2I2R? 2
121 = J<R2(1 —w2LC)? + w2L2> (1.196)
R
6 = tan~t | X1 (1.197)
R
The parallel R-LC circuit is also analysed considering two conditions. First one is X7>X¢ and second one
is Xi<Xc.
Condition 1: X;>Xc
If the inductive reactance is larger than the capacitive reactance then,
X, > X,
1
wL > oC
w?LC > 1
1-w?lC<0 (1.198)

From the above inequality, it is clear that the imaginary term of the equation (1.193) is negative for
X:>Xc. Hence the net reactance (X) is capacitive. Similarly,

X, > X;
1_1
X, Xc
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1 2 <0 1.199)
X, Xc (L
From the inequality mentioned in (1.199), it is clear that the impedance angle in equation (1.197) is
negative for X;>Xc.
The value of total input current flowing through the circuit can be found out by considering negative
impedance angle as,

1=2- AL (Vm)49—1 26 1.200
T Z zZle-6" \|z|)T7 ™ (1.200)
Where, I, is (‘I%ml) Hence the instantaneous value of the input current flowing through the circuit is as
follows,
i = L, sin(wt + 6) (1.201)
Ic
V. i A
-i“
I "
Ic-1;
8 ]
4
T P >,

(b)

Fig. 1.58: Parallel R-L-C circuit for X;>X¢ (a) waveforms; (b) phasor diagram

The relation between instantaneous value of supply voltage and input current as well as phasor diagram
of of supply voltage and input current are represented in Fig.1.58. Fig.1.58 and equations (1.187)
and (1.200) clearly depict that the input current through a parallel R-L-C for X;>Xc is leading the
supply voltage by an angle of 6 (impedance angle or power factor angle).

The active power or average power of this circuit is consumed by only R and it is given by,

2
1 %
P = S Vinlin €0 8 = [Vl | cos 6 = I ms| R = % (1.202)

Ig yms and Vg ms are the rms value of current through R and rms value of voltage across R. Similarly, the
reactive power is only associated with reactive elements. Here the reactive power oscillates
between the inductor, capacitor and source and its value is given by,

1 ] ] 2 Vs |?
Q= =5 Vnlnsing = Vs s | IO = =Ly rms| X = —% (1.203)

Where X is the net reactance of the circuit which is nothing but the imaginary term of equation (1.193).
The value of Iy are given by,
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Iy = v 1.204
X~y (1.204)
The expression of total power or apparent power for the parallel R-C circuit is mentioned as follows,
S=P—jQ (1.205)
2 2 1 2 |Vrms|2
IS| = VP?+ Q% = EVmIm = [Vims | rms| = |Lms|?Z = T (1.206)
Imaginary
Axis
P=|Ig ms'R
Real Axis

Q =- |IX, rms|2)(

Fig. 1.59: Power triangle for parallel R-L-C circuit for X;>Xc

The power triangle for this circuit is presented in Fig.1.59. The power triangle confirms the negative and
leading reactive power and negative power factor angle.

Power factor, which is leading in nature, can be calculated as,
P
PF = cos@ = ST (1.207)
Condition 2: X;<X¢
If the inductive reactance is smaller than the capacitive reactance then,
X, < Xc

L<1
@ wC

w?LC <1
1-w?LC>0 (1.208)

From the above inequality, it is clear that the imaginary term of the equation (1.193) is positive for X;<Xc.
Hence the net reactance is inductive. Similarly,

X, < Xc
1 1
>

———>0 (1.208)
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From the inequality mentioned in (1.208), it is clear that the impedance angle in equation (1.197) is

positive for X;>Xc.

The value of total input current flowing through the circuit can be found out by considering negative
impedance angle as,

_v_vm40°_(vm)4 0=1I,2—6 1.209
T 7 1z126 ~ \|7] om (1209
Where, I, is (‘I%ml) Hence the instantaneous value of the input current flowing through the circuit is as
follows,
i = I sin(wt —0) (1.210)
V, ,‘“ I(' 1 IR -
L] -8 + ] r
Ii-1Ie
T
X

\ [/
(a) (b)
Fig. 1.60: Parallel R-L-C circuit for X;<X¢ (a) waveforms; (b) phasor diagram

The relation between instantaneous value of supply voltage and input current as well as phasor form of
supply voltage and input current are represented in Fig.1.60. Fig.1.60 and equations (1.187) and
(1.210) clearly depict that the input current through a parallel R-L-C for X;<Xc is lagging the
supply voltage by an angle of  (impedance angle or power factor angle).

The active power or average power of this circuit is consumed by only R and it is given by,

|VR,rms |2

R

Ig yms and Vg ms are the rms value of current through R and rms value of voltage across R. Similarly, the
reactive power is only associated with reactive elements. Here the reactive power oscillates
between the inductor, capacitor and source and its value is given by,

1 2
P = Viulm cos 6 = Vs | rms| €0 0 = |Igms| R = (1.211)

1 ] ] 2 Vs |?
Q= 5Vl sing = Vs | s | i0 0 = |Iy rms| X = % (1.212)

Where X is the net reactance of the circuit which is nothing but the imaginary term of equation (1.193).
The value of Ix is given by,

= - (1.213)

The expression of total power or apparent power for the parallel R-C circuit is mentioned as follows,
S=P+jQ (1.214)
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1 |Vems |*
IS| = \/PZ +Q2= EVmIm = [Vims | | rms| = |Irms|2Z = ﬂ;s (1.215)
. +
Imaginary

Axis
O =+ |Ix m’X

>
P=|Ig ms|’R  Real Axis

-v

Fig. 1.61: Power triangle for parallel R-L-C circuit for X;<Xc

The power triangle for this circuit is presented in Fig.1.61. The power triangle confirms the positive and
lagging reactive power and positive power factor angle.

Power factor, which is lagging in nature, can be calculated as,

PF = e—P—IR
= COS _S_I

Example 1.22. A resistor of 12 ohm, an inductor of 0.05 H and a capacitor of S0uF are connected in
parallel to each other. The supply voltage is 240V, 50 Hz single phase sinusoidal. Find the total
current flowing through the circuit.

(1.216)

Solution:
Current through the resistor is given by,
240v2

R=T12
Current through the capacitor is given by,
| 240V2  240V2
le=/—%—=/%369

Current through the inductor is given by,

2402 24072
202 \/_=—j21.62A [X, = wl]

= 28.284

) 1

=% —="7757
Total current flowing through the circuit is given by,
I=1Ig+1.+1, =2828—j163 A =32.642—29.95° A
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1.8 Resonance

Resonance in electrical circuits is a very significant phenomenon which is useful in communication
applications, filter design etc.

Resonance in RLC circuits occur when the capacitive reactance is equal to the inductive reactance and
circuit becomes resistive in nature.

1.8.1 Series resonance

| =
| 1 >|e— . |1 >

V=1, 20° @

Fig. 1.62: Series R-L-C circuit

Fig. 1.62 shows a series R-L-C circuit indicating the all voltage and current values. In a series R-L-C if
the inductive reactance becomes equal to the capacitive reactance then the impedance of the circuit
is equal to the resistance of that circuit. The phenomenon during resonance is demonstrated as,

X, =X; (1.217)
Z=R+jX,—X;) =R (1.218)
Hence it can be mentioned as,
X, =Xc
1
wlL = oC
1
w = \/? = w, (1.219)
1
fr = - (1.220)

Equations (1.219) and (1.220) represent the expression of resonant frequency (e, or f ) in rad/sec or Hz
respectively. This condition can be achieved by changing the frequency for a fixed value of L and
C. It can also be achieved by varying L or C for a fixed frequency.

Variation of R, X;, Xc and Z with frequency:
Fig. 1.63 shows the variations of R, X;, Xc and Z with frequency. At zero frequency X; is zero but Xc and
Z are infinity. The value of R is independent of frequency. As frequency increases the value of X;

increases but the value of X¢ decreases. At resonant frequency (f- or w,), the X; = Xc and Z = R.
At the frequencies below the resonant frequency, Xc>X; and Z decreases as Xc increases. At
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resonant frequency, Z has the lowest value. At the frequencies above the resonant frequency,
X:>Xc and Z increases as X¢ decreases or X; increases. Fig. 1.64 demonstrates the variation of
power factor angle with the frequency. At resonant frequency, the value of it is zero indicating the
resistive nature of the circuit.

XX XoXe
XA P

P VS
13
=~
I~

j{ —— eescscsaass
=t or wo=w,
form

SR, YRR N

Fig.1.63: Variation of R, X;, Xc and Z with frequency

+6 & Tt
Capacitive | Indictive

QUU ............. % ............

-

forw

i
'
'
'
'
'

f=fror o=wr

49\[
Fig.1.64: Variation of power factor angle (6) with frequency

Current at resonance:

The current as resonant frequency is maximum as the impedance at that frequency is minimum. The R-
L-C series circuit accepts maximum current at resonance, so under resonance it is known as
acceptor circuit.

14
Inax =3 (1.221)

PF at resonance:
In a series R-L-C circuit, the power is the ratio of resistance and impedance of the circuit and impedance

at resonant frequency is equal to the resistance. Hence the power factor at resonance is unity and
the power factor angle is zero.
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Bandwidth:
The active power dissipated across the resistor as resonance is given by,
Presonance (@) = gy’ R (1.222)

This power is the highest power dissipated and it decreases as frequency increases or decreases.

Power dissipated at any other frequency for a series R-L-C circuit is given by,

P(w) =I?R (1.223)
Where the value of / is given by,
Vv
I = (1.224)

\/RZ + (wL - ﬁ)z

Using the equations (1.221) and (1.224), it can be written as,

i R
= (1.225)

fmax \/RZ +(wL - ﬁ)z

Let us assume at frequencies w; and ®, the power dissipated in this circuit are equal and its value is half
of the maximum power dissipated. These frequencies are known as half-power frequency. Then it
can be written as,

Presonance (a)) _ Imasz
2 )

It is clear from the above equation that the current at w; and ®; is 0.707 times of Iyax. Fig. (1.65) shows
the variation of current through this circuit with the frequency. During this condition, the voltage
across L and voltage across C are equal and opposite. Hence, the total voltage across the series
combination of L-C is zero and the series combination of L-C is acting like a short circuit at
resonance that is why the entire voltage is appeared across the resistor. The current through resistor
is also maximum during this condition.

I

Pi(wy) = P(wy) =I°R = (1.226)

T R prmmemmemememmmmnenaes

BRIV s sscssussssspiflissassd

(7] on ({0 5] [0}

Fig. 1.65: Current variations with frequency for a series R-L-C circuit

At w; and ®;, the value of current is 0.707 times of /..~ Hence the equation (1.225) is modified for the
frequencies w; and m; or at half-power frequencies as,
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0.7071 R
; = = = (1.227)
max 2 _ i
\/R +(wL——)
Solving equation (1.227), the values of frequencies are obtained as,
S (Ea 1228
RCY) 21) T LIC (1.228)
R 1229
©2= 9L 21) TLIC (1.229)

The relation between these half-power frequencies and resonant frequency is obtained by using equations
(1.219), (1.228) and (1.229) as,

Wy = /W1 W, (1.230)

; and ®; are known as lower cut-off frequency and upper cut-off frequency respectively. The difference
between these two half-power frequencies is known as bandwidth. It is measured in rad or Hz. The
expression for bandwidth is given by,

R
It can be also expressed as,
R
BW= (f, —f) == :
(=) =57 (1.232)
Quality factor:

The sharpness of the bandwidth is measured by quality factor. It is measured as the ratio of peak energy
stored in inductor or capacitor to the energy dissipated in resistor in one period at resonance. It is
expressed as,

L Lo(L)
Q Factor = 2m ; Z ~ =271 21 wrcl
Tnp(l lrpp(l
PR(E)rR()
w,L 1
Factor = = 1.233
Q Factor R~ w.CR ( )

Quality factor is dimensionless as it is the ratio of two quantities with the same dimensions. Quality factor
can be expressed in terms of BW using equation (1.231) and (1.233) as,

Q Factor = (1.234)

-

BW

From equation (1.235), it is clear that higher the value of quality factor lower the bandwidth of the circuit.
This means better the selectivity of the circuit. Selectivity of a circuit is the ability of the circuit to
respond to a certain frequency and eliminate all other frequencies.
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Voltage at Resonance:

At resonance the voltages across inductor and capacitor for a series R-L-C circuit are derived as,

L= 1
Wrs = w,C
V1
InaxwrL = Ewrl‘ = Imax o, = Ewrc
VL,resonance = VC,resosnance =Vx (Q Factor) (1235)

The voltages across inductor and capacitor for a series R-L-C circuit at resonance are equal. As the current
through the circuit under this condition is maximum, the voltage across resistance is maximum at
resonance. The voltage across inductor and capacitor at resonance is magnified by Q Factor times
than source voltage.

Example 1.23. A series R-L-C circuit has the following parameter: R = 10 ohm, L = 0.05 H and C =
50uF. Find out the resonant frequency, bandwidth, quality factor, lower cut-off frequency, upper
cut-off frequency.

Solution:
Resonant frequency is calculated as,
1 1
“r=JIC V005 x50 x 10-6
Bandwidth is given by,

= 632.45rad/sec

R
BW = = 200 rad/sec

Quality factor is calculated as,

w, 63245
BW 200
Lower cut off frequency is obtained as,

B R+ (R>2+1
“1= 7oL 21) T IC

1
@17 T3%005 J(z X 0.05) .05 x50 x 10-6
Upper cut off frequency is obtained as,

@2 = / 2L

2
1
Wy = 2><005Jr 2><005> 0.05 X 50 x 10-6

Q Factor = =3.16

= 540.3 rad/sec

= 740.3 rad/sec
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1.8.2 Parallel resonance

I1=1,20"

11
!!

Fig. 1.66: Parallel R-L-C circuit

Fig. 1.66 shows a parallel R-L-C circuit indicating the all voltage and current values. In a parallel R-L-C
if the inductive susceptance becomes equal to the capacitive susceptance then the impedance of
the circuit is equal to the resistance of that circuit. The phenomenon is known as parallel resonance.
Using the concept of equation (1.191), it can be stated that during parallel resonance the relation
between inductive and capacitive reactance is given by,

e =

1
C=— 2.236
wC=— ( )
The frequency at which parallel resonance occurs is given by,
1
0. = 2.237
r= g ( )

The expression for parallel resonant frequency is same as of series resonant frequency. The variation in
voltage in parallel R-L-C circuit with frequency is shown in Fig. 1.67. It is evident from the figure
that the parallel combination of L and C is acting like open circuit at resonance that is why the
entire current is flowing through the resistor.

174
B leosmnomas

0.707L, R Voo b )

i >

@ @y @3 @

Fig. 1.67: Current variations with frequency for a series R-L-C circuit
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Quality factor:
Quality factor for a parallel R-L-C is expressed as,

R
Q Factor = = w,CR (1.238)

r

Current at resonance:

The magnitude of current through L and C during at resonance are given by,

vV I,R
|| = ol = o L = Q Factor X I, (1.239)
|I;| = w-CV = w,CL,R = Q Factor X I, (1.240)

It is evident from the above two equations that the current through L and C during at resonance in a
parallel R-L-C is magnified by Q Factor times as compared to source current.

Bandwidth:

By using the duality between series R-LC circuit and parallel R-L-C circuit and by comparing their
impedance equations, the expressions for lower cut-off frequency and upper cut-off frequency are
obtained as,

S ([ 1201
“1= T3RC 2rC) T IC (1.241)

-t () + 2 1242
“2= JRC 2rc) T IC (1.242)

The difference between these two half-power frequencies is known as bandwidth. It is measured in rad
or Hz. The expression for bandwidth is given by,

1
BW = (wz—wﬂ:ﬁ

It can be also expressed as,
BW = (f,-fi)= TRC

Example 1.24. A parallel R-L-C circuit has the following parameter: R = 20 ohm, L =0.02 H and C =
20uF. Find out the resonant frequency, bandwidth, quality factor.

(1.243)

(1.244)

Solution:

Resonant frequency is calculated as,

1 1
W, = = = 1581.13 rad/sec
" VIC 0.02x20x107°
Bandwidth is given by,
1 1
BW = = 2500 rad/sec

RC 20 x 20 x 10-6
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Quality factor is calculated as,

Q Factor =

w, 15811

BW - 2500 _ 063

UNIT SUMMARY

1.

Alternating voltage and current generated by alternators are sinusoidal in nature. Sinusoidal
waveforms are periodic in nature. They are defined by their amplitude, frequency and phase.
Sinusoidal waveforms are represented in time domain as well as in phasor domain. It is
convenient to perform mathematical operations in phasor domain.

RMS value and average values of symmetrical alternating waveforms are calculated by
considering half of the total time period. Whereas, rms value and average values of asymmetrical
alternating waveforms are calculated by considering the total time period. AC quantities are
rated and specified by their rms values.

Impedance is the resistance offered by the ac circuit. It is measured in ohms. It has two
components: resistance and reactance. Reactance can be inductive or capacitive in nature.
Current leads the supply voltage if the capacitance nature of the circuit is dominating. For
inductance dominance circuit current lags the supply voltage. In case of purely resistive circuit,
voltage and current are in same phase.

In ac circuit complex power is computed. Unit of complex power is VA. It has two components.
First one is active power which is measured in Watts. Active power does the useful work.
Another one is reactive power which is measured in VAr. Reactive power oscillates between
reactance (inductor and capacitor) and source. Average power or active power consumes by pure
inductor and pure capacitor is zero.

Relation between complex power, active power and reactive power is represented in terms of
triangle in complex plane. It is known as power triangle.

Similarly, relation between impedance, resistance and reactance is represented in terms of
triangle in complex plane. It is known as impedance triangle.

If the inductive reactance becomes equal to the capacitive reactance in a R-L-C circuit then the
circuit becomes resistive and the phenomenon is known as resonance. Resonance can occur in
series as well as parallel circuits. Resonance is an important phenomenon for communication
systems, filter design etc.

10. Quality factor determines the sharpness of the bandwidth under resonance.



EXERCISES

Multiple Choice Questions

1.

o O T o

o O T 9 N

Unit of admittance is
.ohm
. mho

. siemens

. tesla

. The current in a pure inductive circuit
. lags the supply voltage at any angle
. leads the supply voltage at any angle

. lags the supply voltage by 90°

. leads the supply voltage by 90°
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3. In a R-L-C series circuit, if the inductive reactance is larger than the capacitive reactance

a
b
c
d

then the reactive power will be
. positive and lagging
. positive and leading
. negative and lagging
. negative and leading

3. In a R-L-C parallel circuit, if the inductive reactance is larger than the capacitive reactance

o O T o

o O T 9 »

then the reactive power will be
. positive and lagging
. positive and leading
. negative and lagging
. negative and leading

. The frequency of the reactive power is
. half of the supply frequency

. one fourth of the supply frequency

. double the supply frequency

. triple the supply frequency
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. The value of j operator

a0 T p oo
o —
15
[N

. If the impedance angle of a circuit is positive then the power factor angle will be
0

. positive

. negative

o 0 T O

. sign neutral.

. If the current through a circuit leads the supply voltage by 30°, then the power factor will be
. 0.866 leading

. 0.866 lagging

. unity and lagging

. unity and leading

o O T 9

o

. If the current through a circuit is j and the supply voltage is 1V sinusoidal, then the impedance
angle of the circuit will be

. positive and 90°
. negative and 90°
. positive and Q°

o O T

. negative and Q°

. During resonance the circuit will become
. purely inductive

. purely capacitive

. purely resistive

o O T & ©

. purely magnetic

10. If the Q Factor increases then for a fixed resonant frequency, bandwidth will
a. increase
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b. decrease
C. remain same
d. either increase or decrease

Answers of Multiple-Choice Questions
1.c 2.c 3.d 4.c 5.c
6.b 7.a 8.b 9.c 10.b

Short Answer Questions:

What is the meaning of alternating quantity?

Define frequency, time period, phase, amplitude, phase difference and cycle.

What is the positive phase sequence and negative phase sequence?

Give the mathematical definition of rms value and average value of a periodic function.
What do you mean by periodic function?

Draw the phasor relation between supply voltage and current for a pure resistive, pure
inductive and pure capacitive circuit.

What do you mean by impedance? What is the unit of it?

What do you mean by power factor? Draw the power triangle of series R-L circuit.

. Write down the condition of series resonance.

0. Mention the significance of quality factor under resonance.

o0 hrwN -

= © N

Long Answer Questions:

1. Prove that the average power consumed by an inductor over a complete cycle is zero.

2. Show that the impedance angle of a series R-L-C circuit is positive if the capacitive reactance
is dominant.

3. Derive the expression for instantaneous power, active power, reactive power and PF for a
series R-C circuit excited by sinusoidal ac voltage source.

4. Discuss the series resonance phenomenon in a series R-L-C circuit and derive the
expression of bandwidth considering an sinusoidal ac voltage excitation.

5. If the impedance angle of parallel R-L-C circuit is negative then draw the phasor relations
between the three branch currents and derive the expression for active power, reactive
power, apparent power and power factor. Consider the source as sinusoidal ac voltage.

6. Compare the series and parallel resonance.

Numerical Problems

1. A sinusoidal is expressed as v(t) = 10sin(100t + 20°). Find out the amplitude, phase,
frequency, time period, angular frequency.

2. Calculate the phase angle between the two sinusoidals given by v, (t) = 10sin(100t + 20°)
and v, (t) = —20 cos(100t — 30°). Which sinusoidal is leading?

3. Find out the resultant of two phasors represented by I; = 20210° and I, = 30230°.
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4. Find out the resultant of two sinusoidals represented by v, (t) = 10sin(100t — 20°) and
v,(t) = 20 sin(100t — 309).
5. Find out the rms and average value of a function given by
s

v(t) = 10sinwt 0< wt< 2

T
=0 E<a)t<n

6. Determine the expressions of rms and average value of the voltage waveform shown in
figure below considering both the curves (curve 1: 0 to /2 and curve 2: /2 to w) as
sinusoidal. If Vi, is 200 V, then calculate the RMS and average voltages of the waveform
given below.

‘rm

0.866V,,

/2 L 0

7. Find the rms and average value of the waveform given below. Consider the time period as
10 seconds and the unit of current in Ampere.

i J

............. <. -10

8. A single phase circuit consists of a pure resistance and a coil (combination of inductor
and resistor in series) in series. Power dissipated in the resistance and in the coil are
1200W and 350W respectively. The voltage drops across the resistance and the coll
are 250V and 400V respectively. Determine the i) value of pure resistance ii) resistance
and reactance of the coil iii) coil impedance iv)combined resistance of the circuit.

9. The voltage applied to a series R-L circuit is v(t) = 100sin wt and current flowing
through it i(t) = 10 sin(wt — 45°). Find out the value of impedance, impedance angle,
resistance, inductive reactance. Also calculate the active power, reactive power and
total power drawn by the circuit.



10.

11.

12.

13.

14.

15.

16.
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In a series R-L circuit the value of applied voltage is 230 sin (0t - 1500) Volts and current
flow through it is 0.5 sin (0t - 2100) A find the value of impedance, active power
consumed, reactive power, power factor. Also draw the phasor diagram of voltage and
current mentioning the values and angles.

A resistor of 50 ohm is connected in series with a 100uF capacitor to a 50Hz, 230V
supply. Find the value of impedance, current through the circuit, voltage drop across
each element, power factor.

In a series circuit containing resistance and capacitance, the current and voltage are
expressed as i(t) = 4 sin(100 7 t + 10°) A and v(t) = 120 sin(100 7 t - 20°) V. Determine
the a) Impedance b) Values of resistance and capacitance c) Reactive power. Also
draw the phasor relation between voltage and current.

A series circuit consumes 1000 Watt at 0.866 lagging power factor, when it is connected
to a 220V, 50Hz single phase ac supply. Calculate reactive power, apparent power,
current flowing through the circuit, impedance of the circuit, value of the resistor. Also
draw the phasor diagram of voltage and current mentioning the values and angles.

A voltage of v(t) = 120 sin(100 7 t - 20°) V is applied to a circuit consisting of R, L and
C are in parallel. Consider the value of R as 50 ohm, value of | as 2mH and value C as
50pF to calculate the current flowing through each element. Also find out the power
factor angle.

A series R-L-C circuit consists of 500 ohm resistor, 50mH inductor and 0.05uF
capacitor. Find the impedance of the circuit at 50 Hz. Also calculate the resonant
frequency in rad/sec, bandwidth, quality factor and current at resonant frequency.

A pure resistor of 100 ohm, pure inductor of 60mH and pure capacitor of 0.5uF are
connected in parallel across a 10A ac current source. Find out the resonant frequency
and bandwidth.

PRACTICAL

1. Use LTspice to determine the current through a series R-L-C circuit with R=100 ohm, L= 2
mH and C=50 pF when connected to a 230V, 50Hz ac voltage supply. Also determine the
power factor angle of this circuit.

2. Use LTspice to determine the maximum current flowing through a series R-L-C circuit during
resonance. Consider R=10 ohm, L=0.01 H and C=150 pF.

KNOW MORE

1.

A resistor of 50 ohm is connected in series with a 100uF capacitor to a 50Hz, 230V
supply. Find the value of current through the circuit and power factor using LTspice.
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i

vi 1004 50

SINE(0 325.2250 0 0 0)
AC 325.22 0

.ac lin 100 50 50

W * GAVIM\September-Decernber 2021\ Diraft3.asc *

--- AC Analysis -—-—-

frequency: 50 Hz

V(n001) : madg: 325.22 phase: o* voltage
V(n002) : madg: 274.344 phase: 32.4816° voltage

I(Cl): mag: 5.48688 phase: -147.518° device current
I(R1): mag: 5.48688 phase: -147.518° device current
I(Vl): mag: 5.48688 phase: -147.518° device current

Fig. 1. 68: Steady state response of series R-C circuit of the problem given using LTspice
Current through the circuit is 5.48.32.48° and power factor is cos 32.48° = 0.8435 leading.
REFERENCES AND SUGGESTED READINGS
1.Charles K. Alexander and Matthew N. O. Sadiku, “Fundamentals of Electric Circuits”,

McGraw Hill Publishers, 7t Edition, 2021.
2.D Roy Choudhury, “Networks and Systems”, New Age International Publishers, Reprint 2005.



Network Reduction and
Theorems

UNIT SPECIFICS

Through this unit we have discussed the following aspects:

o Source transformation

o Star to delta and delta to star transformation
o Mesh analysis

e Node Analysis

o Superposition theorem

o Thevenin’s theorem

e Norton’s theorem

o Maximum power transfer theorem

e Reciprocity Theorem

o Duality of an electric circuit

RATIONALE

An electric circuit consists of voltage sources, current sources and passive elements (R, L, C) in
series and parallel combinations. In order to analyse the circuit, the circuit is to be transformed for easy
and fast analysis, hence both source transformation, star to delta transformation and vice versa are
utilized. Based on the circuit formation, analysis could be done by mesh analysis or node analysis. In this
chapter, few theorems are discussed to find the response of the circuit using the simplified method. The
superposition theorem is applicable to the circuit consisting of more than one sources of the circuit. Both
Thevenin’s and Norton’s theorem are used for solving any complicated circuit in effective manner. In
most of the practical applications, the maximum power delivered by an electric circuit is calculated before
the installation. Hence the maximum power transfer theorem helps to provide the load impedance value
for the maximum power. The reciprocity theorem is applicable to the circuit which has only one source
in it. The electric circuit have many dual pairs (voltage- current, resistance — conductance, inductance-
capacitance) that has been discussed in this chapter.
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PRE-REQUISITES

Vector calculus

Single-phase systems

UNIT OUTCOMES

List of outcomes of this unit is as follows:

U2-O1: Understand the concept of source transformations, star — delta and delta -star
transformations

U2-02: Apply the mesh and node analysis for a circuits

U2-03: Comprehend and exploit the superposition theorem, Thevenin’s and Norton’s theorem
U2-0O4: Realize the concepts of the maximum power transfer theorem, reciprocity theorem
U2-05:  Identify the dual pairs in a circuit

Unit-2 EXPECTED MAPPING WITH COURSE OUTCOMES
Outcomes (1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)
CO-1 CO-2 CO-3 CO-4 CO-5

u2-01 2 2 _ 3 ;
U2-02 I ] _ 3 ;
U2-03 1 ) _ 5 E
U2-04 1 1 _ P 3
U2-05 1 ) _ 5 E
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2.1 SOURCE TRANSFORMATION

The source transformation is one of the tools for analysing the circuits in a simple method. In dc circuits,
the dc voltage source in series with the resistance is converted to the dc current source in parallel
with the resistance which is represented in Fig.2.1. The value of the current source is calculated as

I = Es' Similarly, the current source in parallel with resistance is converted into voltage source in

series with the resistance. The voltage source value is calculated using V; = I * R. The ac voltage
source in series with the passive elements like R, L, C is converted into the ac current source in

parallel with these passive elements as shown in Fig.2.2 and vice versa. The conversion values are
Vs20
z

calculated as voltage source into current source using I;2¢ = or current source into voltage

source using V;20 = I;2¢ * Z.

%

v () — OB

Fig. 2.1: Source transformation in dc circuits

V4

— L

[ ]

Fig. 2.2: Source transformation in ac circuits
Example 2.1: Find the voltage across 30Q resistor shown in Fig.2.3 using source transformation method.
200

300 « Vx

D 3

Fig. 2.3: Source transformation in dc circuits of Example 2.1
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Solutions: The circuit shown in Fig.2.3 is the dc circuit. In this problem, current source and parallel 10Q
are converted into voltage source in series with resistance 10Q2 which is shown in Fig.2.4.

10Q 20Q

Fig. 2.4: Current source converted into voltage source of Example 2.1
Hence the current (I) flowing in the circuit is assumed as clockwise direction and is shown in Fig.2.3 that
could be performed as follows.
+20—107 —20/ —30I —30=0
—60I —10=0

601 = —10; 1= — 2= _0.1674
S T 60

Since the current I polarity is negative, it means that the assumed current direction is wrong and that to
be reversed and the modified circuit is shown in Fig.2.5. Hence the current I flows through 30Q
as indicated by the arrow. Hence the voltage across 30Q is calculated as follows.

Vion = %300 =(0.167)(30) = 5.01V

Hence the voltage across 30Q2 is needed to be found is named as V,.. Since the polarity of the both voltages
Ve, Vaoq are reversible. Hence V, = —V39q = —5.01V.

10Q2 200

30Q
_|_
20V<+> I
~ 30V

Fig. 2.5: Current through the circuit is reversed of Example 2.1
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Example 2.2: Find the voltage across 10Q resistor shown in Fig.2.6 using source transformation method

50 40 -j13Q

10QQ v
20/-45"Y (~~ x

Fig. 2.6: Source transformation in ac circuits of Example 2.2

Solutions: The circuit shown in Fig.2.6 is the ac circuit. In this problem, voltage source in series
resistance 52 are converted into current source in parallel with resistance 5€ which is shown in

Fig.2.7.
Vo 20£-45°
[ _ 0
- - 4,—45°4
40 -j13Q
30 T
100 >
4/-45" 4 f 50 x
J4Q

Fig. 2.7: Voltage source transformed into current source of Example 2.2
In Fig.2.7, 5Q and (3+j4) Q are in parallel. These are made into the single impedance Z,4; which is
calculated as follows and represented in Fig.2.8.
_ 5%(3+4+j4) 154,20 25453.1
Zeqr =SB +JDA = e 777 = 514~ 89422656
= (2.49 4+ j1.25)Q

= 2.79426.54
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40 —/132
ANN—E
_I_
100
Vx
4/-45'4 249471290

Fig. 2.8: Two parallel impedances made into one single impedances of Example 2.2

A current source (4. —45° 4) in parallel impedance(2.49 + j1.25)Q) is converted into a voltage source
in series with the impedances which is shown in Fig.2.9.

Vis = (4£-45°4)*(2.49 + j1.25) = 11.16£ — 18.44V

(249+125Q 10 130

—\\N

11.16/-1844°V Vx

Fig. 2.8: Two parallel impedances made into one single impedances of Example 2.2
A total impedance of the circuit shown in Fig.2.8 is (16.49-j11.75) Q. Hence the current flowing that

11.16£ —18.44° _ 11.16£-18.44
(16.49-j11.75)  20.252-35.47

Hence the voltage across 10Q resistance is Voo = (0.552£17) = 10 = 5.5217°V
2.2 STAR/DELTA and DELTA/STAR TRANSFORMATION

As like source transformation, star/delta transformation is also applicable to both dc and ac circuits. The
conversion of star connected impedances is converted into delta connected impedances which is
pictorially represented in Fig.2.9.

circuitis [ = = 0.55217°4
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A [ 2 ZAC .
2 (‘,‘bc
B e o D
(a) Star Connection (b) Delta Connection

Fig. 2.9: Star connected load transformed into delta connected load
Based on the Fig.2.9a, the equivalent value of the impedances by looking from terminals A and B, that
could be written as equation (2.1).
Z AB — Z 1 + Z 2
Similarly, the equivalent impedances are obtained from terminals A and C, terminals C and D and they
are presented in equations (2.2) and (2.3) respectively. Both B and D are the same potential. Hence
D could be replaced with B.
Z AC — Z 1 + Z 3
Zep =Zcep =2y + 23

@.1)

2.2)
(2.3)

1 e eiee Zyc  feeeeeeess —e3
2 o4
(a) Delta Connection (b) Star Connection

Fig. 2.10: Delta connected load transformed into star connected load

Based on the Fig.2.10a, the equivalent value of the impedances by looking from terminals 1 and 2, that
could be written as equation (2.4).
Zyp = Zap ||(Zac + Zpc)

Similarly, the equivalent impedances are obtained from terminals 1 and 3, terminals 3 and 4 and they are
presented in equations (2.5) and (2.6) respectively. Both terminals 2 and 4 are the same potential.

Hence 4 could be replaced with 2.
Z13 = Zpc ||(Zap + Zpc)
Zy3 = Zpc |(Zap + Zpc)

(2.4)

(2.5)
(2.6)
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By comparing Fig.2.9 and Fig.2.10, the potential A, potential B are equal to potential at point 1 and 2
respectively. Hence, Z,5 = Z;,. Similarly, Z,, = Z;3 and Z;z = Z,3. The following equations
(2.7) to (2.9) are written based on the above statements.

_ Zap*(ZactZpc)

itz = ZaptrZactZpc @.7)
_ Zac*(ZaB+Zpc)

Zy+Z;5= ZantZactZne (2.8)
_ Zpc*(Zap*Zac)

Z,+27Z;= ZantZactine (2.9

By subtracting the equations (2.9) from (2.7), the equation (2.10) is obtained. By adding (2.10a) and
(2.8), the equation (2.11) is attained.

7 —7 = ZapZactZapZpc—ZBcZaB—ZBcZAC (2.10)
! 3 ZaptZactZpe ’
ZapZac—ZBcZ
Z,— 7= aBZac—ZBcZac (2.10a)
ZpptZactZpe
ZAcZABYZAcZBeYZABZAc—ZBCZ
27, = acZaBtZacZpctZapZac—ZpcZac @.11)
ZaptZactZpe
_ _ 2ZacZsaB
ZaptZactZpe
Hence,
ZacZ
Z, = — CACZAB (2.12)
ZaptZactZpe
ZABZ
Zy =2 (2.13)
ZaptZactZpe
ZacZ
Zy= = (2.14)
ZaptZactZpe

For Star to Delta conversion, use the equations (2.12) to (2.14) and perform Z,Z, + Z,Z5 + Z1Z,
ZigZacZpc + ZbcZapZac + ZicZapZpc
(Zap + Zac + Zpc)*
_ ZppZacZpc(Zap + Zac + Zpc)
(Zap + Zac + Zpc)*
ZppZacZpc ZpcZpc

= =/7.n %
Zap +Zac + Zpc A8 Zag + Zac + Zpc

Z1Z2 +Z2Z3 + Z1Z3 =

Z1Z2 + Z2Z3 + Z1Z3 = ZAB * ZAZA# (215)

BtZactZpc

By using (2.14), the equation (2.15) becomes as follows.
Z1Z2 + Z2Z3 + Z1Z3 = ZAB * Z3
Hence,

_ ZyZy+ZyZ3+ 217,
2, = BEtBEthE (2.16)

Similarly,
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VAVAR YAVAR YAVA

Z =12 243 143 2'17

4 = DB (217
VAVAR YAVAS YAVA

Zp =2 LTAR (2.18)
1

In general, Z,Z, + Z,Z4 + Z,Z5 could be represented as ), Z,Z,. Hence equations (2.16) to (2.18) are
written as equations (2.19) to (2.21) respectively. These equations are used for the conversion of
star (Y) into delta (A) connection.

NZ,Z

Zyp =222 (2.19)
NZ,Z

Zye =222 (2.20)
S Z,Z

Zpe =222 (2.21)

Similarly, Z4g + Z4¢ + Zgc could be represented as Y, Z,5. Hence equations (2.12) to (2.14) are written
as equations (2.22) to (2.24) respectively. These equations are used for the conversion of delta (A)
into star (Y) connection.

Z, = Z‘Z“Czﬂ (2.22)
AB

Z,= Zg‘;ﬂ (2.23)
AB
_ ZacZsc

Z3=~5, (2.24)

When all the impedances are equal, Zyg = Z4c = Zge = Zy & Z; = Z, = Z3 = Zy, the equations (2.22)
could be mentioned as follows,

Zy = 2
Y73z,
Zy = Z?A (2.25)

From the equation (2.25), it is understood that the delta impedances are converted into star impedances
by dividing with 3. In other words, obtaining delta impedances from the star impedances by
multiplying with 3.

Example 2.3: Perform the star connected impedance into delta connected impedances in Fig.2.11 using

star/delta transformation method. Consider terminals 1, 2 and 3 are the terminals of star connection.
Z,=5Q; Z, =B +j4Q; Z; = (4 —j13)Q
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50 N 40 —j13Q
30 T

20/ 45y Vx

Jj4Q

2

Fig. 2.11: Star/delta transformation in ac circuits of Example 2.3

Solutions: The circuit shown in Fig.2.11 is the ac circuit. In this problem, the star impedances are
converted into delta connected impedances which is represented in Fig.2.12. The Fig.2.12 is
modified for the convenient to make the loops as like in Fig.2.13.

Z, =5Q; Z, = (3+j4)Q =5£53.13% Z; = (4 — j13)Q=13.64 — 72.9°
Hence delta connected impedances are Z;, = 22_122; Zi3 =272 = 22_122;
3 1
Zzlzz =0B)B+j4)+B+j4)(4E —j13)+(5)(4 —j13) =99 —j68
= 120.12 — 34.48°

7y, = % = 8.83238.42 =(6.92+j5.48) Q
Zyy = = 24, — 87.61 = (1-j23.97) Q
Zys = w =24/ —34.48 = (19.78 — j13.58) Q
L (1-j23.97) 3
20£-45°V

2

Fig. 2.12: Star to delta transformation in ac circuits from Fig.2.11
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1-j23.97)

1

_ +

)

\n
20/-45"Y B =2 Y
NI E 2 —

o o S

A 2

2

Fig. 2.13: Star to delta transformation in ac circuits from Fig.2.12

Fig.2.13 provides the equivalent delta connected impedances of the given star connected impedances as
given in this problem.

Example 2.4: Perform the delta connected impedance into star connected impedances in Fig.2.13 using
star/delta transformation method.  Z;, =(6.92+j5.48) Q; Z,3 = (1 —j23.97)Q; Z,5=
(19.78 —j13.58) Q

Solutions: The circuit shown in Fig.2.13 is the ac circuit. In this problem, the delta impedances are
converted into star connected impedances.

Z15 =(6.92+j5.48) Q; Z,5 = (1 —j23.97) Q; Z,; = (19.78 — j13.58) Q
ZacZas _ ZaBZpc, — ZacZgc
Sz 2 $Zap 0 3 Y Zap
equations (2.22) to (2.24). These equations are replaced according to the problem. Since terminals
are mentioned as 1, 2 and 3. Hence the suffixes A,B and C are replaced with 1, 2, 3 respectively

in the above equations.

Hence star connected impedances are Z; =

according to the

2137213 | 7. = 213233, — Z13Z23
vz, " 2 ¥z, 73 XZ1p
N Ziy =Ziy + Z13 + Zy3 =(27.7-j32.07) Q

The obtained equations are Z; =

 Zy3Zy,  (1-j23.97)(6.92 +j5.48) 138.28 —j160.4 211.782 — 49.23

7, (27.7-j32.07) 4237,-4918  42.37.-49.18

2= Y7, (27.7 —j32.07) = 4237/-4918 4237/ —a918 _ 9980
Z, = 4.998Q
g Z1,Z,5 (692 +5.48)(19.78 — j13.58)  211.29 +j14.42  211.78£3.9
2T N7, (27.7 —j32.07) T 42374 —49.18  42.372—49.18
=4.99,53.08 = (2.99 + j3.98)Q
Z, = (2.99 + j3.98)Q
7, = Z13Z53 _ (1—j23.97)(19.78—j13.58) _ 73003-j13.56 _ 572.744—121.67_13'514 — 72.49=(4.06-
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Z5 =(4.06-]12.8) Q

From the above calculations, it is understood that the star connected impedances Z;,Z, and Z5 values
are similar with the previous problem star impedances. It is proved that star to delta and then delta
to star conversion provided the actual values.

2.3 MESH ANALYSIS

The mesh analysis is based on Kirchoff’s voltage law (KVL). KVL states that the phasor summation of
the voltages in a loop or a mesh is equal to zero or the sum of the voltage rises is equal to the sum
of voltage drops in a loop. The circuit shown in Fig. 2.14 consists of the three meshes namely
ABGHA, BCFGB and CDEFC respectively. In this circuit, the mesh currents 11, I & I3 are to be
found. For that, the three loops will be formed and the corresponding equations (2.26) to (2.28) are

written respectively.

+V14® - 11Z1 - Z2(11 - 12) =0 (226)
—1Z3 = Zy(I —13) = Z,(I; = 1,) =0 (2.27)
_13Z5 - Z4(13 - 12) - Z613 = 0 (228)

Fig. 2.14: Mesh analysis in ac circuits
Eq. (2.26) could be modified as, V,£40 = L,Z; + Z,(I; — I,)
V20=1(Z, +7Z;)— 1,7, (2.29a)
L(Z,+2Z,)—1,Z, =V,20 (2.29b)
Eq. (2.27) and Eq. (2.28) could be modified as,
—1,Z5 = Zyly — Zyls — Zol, 4+ Zo1, = 0
~LZy+ L(Zy+ 25+ 2Z) — 1,2, =0 (2.30)
—LZ,+5(Z,+Zs+27Z5)=0 (2.31)

These equations (2.29) to (2.31) are formed as matrix format which is represented in equations (2.32).

(Z1+2Z3) —Z, 0| r1h V20
_Z2 (Z2 + Z3 + Z4) _Z4 12 = 0 (232)
0 _Z4 (Zz +Z3 +Z4) 13 0
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[Z][1] = [V] (2.32a)

The equation (2.32) will be solved by Cramer’s rule to find the loop currents. A, is the determinant of Z
matrix. A;, A, and A; are the determinant of the matrix, where those matrices are formed by
replacing the 1%, 2™ and 3™ column by [V] matrix. The values of the loop currents are found by
equation (2.33).

M,y B2, A
11 - AZ’ 12 - AZ’ 13 - Ay (233)
Steps for Mesh Analysis:

1. Mark the node terminals and name them.

2. Identify the number of closed loops and mark the current flow direction and also name these
mesh currents as I, I, I3 and etc.

3. Apply the KVL and write the equations.

4. Simplify the equations and form the matrix format as like [Z][I] =[V].

5. Solve the matrix by Cramer’s rule and find the mesh current values.

Example 2.5: Find the voltage across 10Q resistor shown in Fig.2.6 using mesh analysis method.
Consider terminals 1, 2 and 3 are the terminals of star connection. Z; =5Q; Z, =
B+jHQ; Z; = (4 —j13)Q

Solutions: The circuit shown in Fig.2.6 is represented as Fig.2.11. Solve this problem after converting

star into delta transformation which is presented in Fig.2.13. In that figure, the nodes are named
and the meshes are formed that is shown in Fig.2.15.

A B
20£-45"V .
1
3
H G

Fig. 2.15: Mesh analysis of Example 2.5

The loop equations (2.34) to (2.36) are formed according to the KVL and then simplified equations are
presented as equations (2.37) to (2.39) respectively.

(1-j23.97)

@8r'sl+269)
(19.78-j13.58)

1213 —Zp3(I; —I3) — Z1,(I; — ;) =0 (2.35)
_Z23(13 - 12) - 1013 = 0 (236)

After simplification,
Z1211 - Z1212 =20z — 4’5 (237)



88 | Electric Circuits and Networks

Zigly — (Zipg + Zo3 + Z13), + Zp315=0 (2.38)
Z2312 - (10 + Z23)13 = 0 (239)
The simplified equation is formed as matrix which is shown below.
AP —Z13 0 I 202 — 45°
Zip —(Ziz+Z3+Z43) Zy| 2] = 0
0 Z3 —(10+Z33) 1 s 0

(Zyg + Zos + Z13)= 6.92+j5.98+1-j23.97+19.78-j13.58=27.7-j32.07;
(10 + Z,5)=10+19.78-}13.58=29.78-j13.58;

6.92 + j5.48 —6.92 — j5.48 0 L1 [20/ — 45°
6.92 +j5.48  (—27.7 +j32.07) 19.78 — j13.58 H = 0 l
0 19.78 — j13.58 (—29.78 +j13.58)| LI, 0

The determinant values are calculated as per the description given in section 4.3.
A, =4052.7 — j6510.1; A; =3191.6 — j2783.8

simplified equation is formed as matrix which is shown below.
A,=7668.492 — 58.09°
A; =4235.072 — 41.09°

A,
I; =—=0.552217°4
Az
VlOQ =10 * 13 = 5524170]/
Example 2.6: Find the current (I) flowing through the inductor using mesh analysis for the circuit shown
in Fig.2.16.

Solutions: The circuit shown in Fig.2.16 has the two voltage sources and its value is represented in time
domain which needs to be converted into polar form. The conversion is described in the next page.
Based on the description, 50sin5t = 502 — 90°,V; 50cos5t = 50£0°,V

10Q E 0.1F

HS0

o

Fig. 2.16: Mesh analysis of Example 2.6
Inductive reactance X, = (2nfL) = (2w * 50 * 0.5) = 57 = 15.71Q
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1 1

Capacitive reactance X, = )

= 0.318Q

The loop current direction is marked and the impedances are represented in ohms which is represented

in Fig.2.17. The KVL is applied and the corresponding equations are presented in equation (2.40)
and (2.41).

10Q 0.318Q

A I
50/-90°Y % >
L

OIL ST

AN
> C) 5020
2 _

Fig. 2.17: Mesh analysis of Example 2.6 with the loop current direction

5042 —90° — 101; — j15.71(I; — ) =0 (2.40)
—j15.71(I, — I;) — 0.3181, — 5020° = 0 (2.41)
(10 + j15.71)I; — j15.711, = 502 — 90° (2.41a)
j15.711; — (0.318 + j15.71)I, = 5020° (2.41b)
[(10 +j15.71) —15.7.1 ] [11] _ [502 — 900] _ [—50]'

15.71 —(0.318 +j15.71)] |1, 5020° 50

The determinant values are calculated as per the description given in section 4.3.
A, =490.4 —j162.1; A, =j15.9; A, = 500 + j157
A, =516.492 — 18.29% A; = 15.9290°% A, = 524.06£17.43°
I; =30.782108.29% I, = 1.015235.72°
[, = (—9.659 + j29.22)4; 1, = (0.824 + j0.5925)A

I

I,

Fig. 2.18: Mesh analysis for Example 2.6 to find the current I
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The current flowing through the inductor is I. In order to find the current I, the loop currents’ direction is
necessary to know and those are presented in Fig.2.18. The current I is in the same direction of I;
and in the opposite direction of I, Hence the current I is found as (Ii- [) A.

I=(, —I) = (—9.659 + j29.22 — 0.824 — j0.5925) = (—10.483 — j28.6275)A
1 =30.482—110.112° 4
2.4 NODE ANALYSIS

The node analysis is performed based on Kirchoff’s current law (KCL). KCL states that the algebraic
sum of the currents in a node is equal to zero or the sum of the incoming currents is equal to the
sum of outgoing currents in a node. Node is a point where one or more elements are joined together.
The circuit shown in Fig. 2.19 is taken for explaining the node analysis.

Steps for Node Analysis:

a) Identify the nodes and name them as A, B, C and etc.

b) Identify the different potential nodes and mark them as Ei, E2, E3 and etc. Where E;,
E», E; are the node potential.

¢) Mark the current flow direction in the elements of the circuit (called as branch
currents) like I, I, I3 and etc.

d) Apply the KCL at each node potential points and write the equations.

e) Simplify the equations and form the matrix format as like [Y][E] =[I].

f) Solve the matrix by Cramer’s rule and find the node voltage values.
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Time domain into phasor form

-sin(mt)

-cos(wt) cos(mt)

sin(ot)
Fig.2. S Phasor Reference

The voltage is represented in time domain as like given in the example 2.7. v,(t) = 50sin5t, V;
v,(t) = 50cos5t,V

Cosine is taken as the reference: v, (t) = 50cos5t, V is represented in phasor form with zero degree.
V, =5020°,V
Another voltage v, (t) = 50sin5t, V is represented as follows.
v, (t) = 50sin5t = 50 cos(5t —90),V
Hence, V; = 502 —90°,V

Sine is taken as the reference: v, (t) = 50sin5t, V is represented in phasor form with zero degree.
V, = 50200V
Another voltage v,(t) = 50cos5t,V is represented as follows.
v,(t) = 50cos5t = 50 sin(5t + 90),V
Hence, V, = 504 +90°,V
Hint:
As “cos” reference:
Acos(wt + ¢p) = Az
Asin(wt + ¢) = Acos(wt + ¢ —90) = A2(¢p — 90)
—Acos(wt + @) = Acos(wt + ¢ + 180) = A~(¢ £+ 180)
—Asin(wt + ¢) = Acos(wt + ¢ +90) = A2(¢p + 90)
As “sin” reference:
Asin(wt + @) = Az
Acos(wt + ¢) = Asin(wt + ¢ +90) = A2(¢ + 90)
—Acos(wt + ¢) = Asin(wt + ¢ —90) = A2(¢p — 90)
—Asin(wt + ¢) = Asin(wt + ¢ + 180) = A2(¢ + 180)
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_ V1460,—-E;

I
1 Z

(2.42)

Nodes are identified in the circuit shown in Fig.2.19, namely A, B, C, D, E, F, G and H. Now mark the
different potential nodes and mark the branch current direction which is shown in Fig.2.20. Two
potential nodes E; and E» and the branch currents are 11, I, I3, I+ and Is. .

Apply the KCL at the node potential points and the corresponding equations are formed which is
mentioned in equations (2.42a) and (2.43). Where I; is flowing from source V;£6; to node
potential E;. Hence current I; could be written as mentioned in equation (2.42). Hence, equations
(2.42a) and (2.43) are elaborated as (2.44) and (2.45) respectively.

L=1+I (2.42a)
L+1Is=1, (2.43)
Vi£6,-E; _ E;—0  Ei-E,
o + - (2.44)

(V1491 - El)Yl = E1Y2 + (El - EZ)Y3

Y1 +Y,4Y- Y-
()~ ()7 = icn .
EioEp V240,—E; _ E;—0 (2.45)

Z3 Zs Zy

Ys Ya+Y,+Yg _
(?5) E; + (—YS )E; = V26, (2:452)

These equations (2.44a) and (2.45a) are formed as matrix format which is represented in equation (2.46)
and this can be written as equation (2.46a).

(Y1+Y2+Y3) (Y3)
Yy Yy

_ (?) (Y3+}}:4+Y5) [2] = [1]22321] (2.46)
OR
[Y1 +—Y12/3+ " Y, +_Y§3+ Y5] [Eﬂ - 121 44321 : 11:51 ] (2.46a)
a1 & 1
V20,V [~ 7 7 ~ | V,£6,V

H G F E

Fig. 2.19: Node analysis in ac circuits
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Fig. 2.20: Node analysis in ac circuits with node potential and branch currents

Solve the equation (2.46a) using Cramer’s rule and find the node potential E; and E,. Ay is the
determinant of the Y matrix. A; and A, are the determinant of the matrix, where those matrices
are formed by replacing the 15 and 2™ column by [V*Y] or [I] matrix. The values of the node
potentials are found by equation (2.47).

A, A

A 2Ty

Example 2.6: Find the voltage across 10Q resistor shown in Fig.2.6 using node analysis method.
Consider terminals 1, 2 and 3 are the terminals of star connection. Z; =5Q; Z,=
B+jHQ; Z; = (4 —j13)Q

Solutions: The circuit shown in Fig.2.6 is redrawn as Fig.2.11. Solve this problem after converting star
into delta transformation which is presented in Fig.2.13. In that figure, the nodes are named and
the loops are formed that is shown in Fig.2.15. In order to solve that the Fig.2.15 is modified as
Fig.2.21 with node potential markings and current flow direction.

E
S

(2.47)

(1-j23.97)
1 Ez

@r'sl+z69)
' 5
o
_|_

20/ —45"V

(19.78-j13.58)
3

Fig. 2.21: Node analysis of Example 2.6

Based on the Fig.2.21, the node potential E; is measured at node point E; to the reference potential G. As
per the definition, E; is equal to 202 — 45°V.
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E 20£-45 20£-45
Hence, I, =+ = =

= - = = 2.26,—83.3%4
Zi,  6.92+j5.48  8.82.38.3

Applying the KCL at node 2, the following equation is obtained.

L=L+1,

E1—E2_E2—0 E,—0
Zi, I - 10

E; 1 1

Z_12 =E, (Z—12 + Z_zo + 10

202 —45 1 1 1

1-j2307 - 0 =j2397 T 1978 —j1358 ' 10’
202 —45

2399, —876 E,(0.0416487.6 4+ 0.0416234.4 + 0.1)

0.8332£42.6 = E,(0.135 + j0.0645)

0.833242.6 = E,(0.15225.5)
_0.833242.6

Ea=315255

The node potential E, is measured at node point E; to the ground potential G. It is equivalent to the
voltage across the impedance Z,, and also the voltage across the resistance 10€Q2. Since they are connected
in parallel.

=5.55217.1°V

Hence the voltage across the 10 resistance is 5.55£17.1°V.

Example 2.7: Find the node potential (E) and the current (I) flowing through the inductor using Node
analysis for the circuit shown in Fig.2.22.

Solutions: The circuit shown in Fig.2.7 has the two voltage sources and its value is represented in time
domain which needs to be converted into polar form. The conversion is described in the next page.
Based on the description, 50sin5t = 502 — 90°,V; 50cos5t = 50£0°,V

10Q E 0.1F

HS0

o

Fig. 2.22: Node analysis of Example 2.7
Inductive reactance X, = j(2nfL) = j(wL) = j(5 % 0.5) = j2.5Q
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. 1 1 .

Capacitive reactance X, = TG0 D) —j2Q

The branch current direction is marked and the impedances are represented in ohms which is represented
in Fig.2.23. The node potential is marked as E. The KCL is applied at that node point and the

corresponding equation is presented in equation (2.48).

10Q E 0.1F

HS0

Fig. 2.23: Node analysis of Example 2.7 with designated nodes and branch current directions

11 = 12 + 13 (248)
502 —90° — E _E +E—5040°
10 "~ j25 —j2

504—90°+5040° =£+i+i
10 —j2 10 j25 " 52

52— 90° +25290° = E(0.1 + 0.42 — 90° + 0.5290°)

—5j +j25 = E(0.1 — jO.4 + j0.5) = E(0.1 + j0.1)

oo J20 _ 20290°
0.1+j01 01412450
141.82,45° 141.8245°

7 j25 252900

E and I are the node potential and current flowing through inductor.

2.5 SUPERPOSITION THEOREM

The superposition theorem is applied to the circuits that consists one or more sources. This theorem is
applicable to both dc and ac circuits or in other words, applicable to linear circuits. For analysing
those ac circuits, superposition theorem is very useful for finding the responses.

=141.8245°V

=56.7224 — 45°A

Superposition theorem states that in a circuit of linear elements containing more than one sources with
single frequency, the current flowing through an element of the circuit when all sources considered
at a time is the sum of all the currents which would flow through that element of a circuit when
individual sources considered separately with that frequency and all other sources are replaced by
their internal impedances.
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Steps for Superposition Theorem:

1. Mark the node terminals and name them.

2. Check the number of sources and its frequencies in the circuit.

3. Find the impedances of each individual components of the circuit for the given frequency. Let
us assume that the circuit consists of two different sources and some RLC components. The
equivalent impedance of each LC components will be calculated for the given frequency.

4. The equivalent circuit of the given circuit is formed,

5. Now, each source is considered separately for finding the response of the circuit. During that
time, any other voltage sources present in that circuit is short circuited and the current sources
are open circuited. Similarly, all sources are to be considered separately and the corresponding
responses are calculated.

6. All calculated responses (O1, Oz, O3, ....On) of each individual circuits obtained by considering
the independent sources are presented in time domain. O; is the responses of the circuit, where
i=1,2,3,...,N. Nis the number of sources in the circuit. Let us assume 0, (t) = Asinwt is
due to the first source. Similarly, 0,(t) = Bsin(wt + 8), 05(t) = Csin(wt — 6), ....0y(t) =
Dsin(wt + ). Hence the overall response is 0(t) = 0,(t) + 0,(t) + -+ Oy(t) =
Asinwt + Bsin(wt + 6) + ---. +Dsin(wt + @).

Superposition theorem for the circuits having multiple sources with single
frequency:
The circuit shown in Fig.2.24 consists of two sources with a frequency of w;.By applying the

superposition theorem, find the current flowing through the inductor. First step is to find the
impedances of inductor and capacitor for the given frequency w;.

XL = (,l)lL, in Q)
XC = 1/((,()1(:), inQ

The source voltages are converted into the phasor form as discussed in Example 2.7, V; sinw,t = V£ —
90°; Vycosw,t = V,£0°% Hence the equivalent circuit in phasor form of sources is shown in
Fig.2.25. Consider E as the node potential. Apply node analysis to find the current flowing through

the inductor (Ref. Sec. 4.4). Let us assume that the current flowing through the inductor is I for
the circuit shown in Fig.2.25.

RinQ E CinF

ANV {¢

VisinatV %

Fig. 2.24: Finding current in the circuit with two sources having single frequency using superposition
theorem

V,cosay t V

Hu|
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RQ

p =

V,£-90°V . @ v, 207

o'l

o

Fig. 2.25: Finding current in the circuit with two sources having single frequency in phasor form

Second step is to consider only one source (Vi) acting on the circuit, another voltage source is short
circuited and the current flowing through the inductor is assumed to be I;.The diagram is shown
in Fig.2.26. Find the current I; by applying node analysis or by simplifying the impedances and
apply current division technique or voltage division technique.

RQ E -Il),(CQ
IN

A4

V,£-90°V

o' IxI

G

Fig. 2.26: Finding current in the circuit with first sources acting alone

Third step is to consider second source (V2) acting alone on the circuit, another voltage source is short
circuited and the current flowing through the inductor is assumed to be I,.The concern diagram is
shown in Fig.2.27. Find the current I, by applying node analysis or by simplifying the impedances
and apply current division technique or voltage division technique.
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RQ E X

MY I§

V,20°7

O I

Fig. 2.27: Finding current in the circuit with second sources acting alone

According to the superposition theorem, the current flowing through the inductor in circuit represented
in Fig.2.25 is the sum of the current flowing through the inductor in circuit represented in Fig.2.26
and the current flowing through the inductor in circuit is presented in Fig.2.27 and the equation
(2.49).

Example 2.8: Find the current (I) flowing through the inductor using superposition theorem for the
circuit shown in Fig.2.22.

Solutions: The circuit shown in Fig.2.22 has the two voltage sources having same frequency of w = 5Hz
and its value is represented in time domain which needs to be converted into polar form. 50sin5t =
504 —90°,V;50cos5t = 5020°,V. Also, the inductive impedance and capacitive impedance are
to be calculated (Ref. Example 2.7). The circuit of the incorporated phasor values and calculated
impedances are shown in Fig. 2.28.

10Q E -j2Q

%,

I
@ 50201

50/-90"V

Fig. 2.28: Finding current in the circuit with two sources having same frequency
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10Q E -20

50/-90°V

Fig. 2.29: Finding current in the inductor when only 1% voltage source acting alone

Step 1: Both sources are acting together, the current flowing through the inductor is calculated (Ref.

Example 2.7) and the value is I = 56.722 — 45° A, which is represented in time domain i(t) =
56.72 cos(5t — 45°) A.

Step 2: First source is acting alone, the current flowing through the inductor (i,(t)) is calculated and
the equivalent circuit is shown in Fig. 2.29 with the branch current direction. According to the
node analysis, the equation (2.50a) is formed.

L=1I+1, (2.50a)
50.—90°—-E E E
T 10 jz5 2
50.—-90° E E E
T 10 10 j25 ' 52

52 —90° = E(0.1 + 0.42 — 90° + 0.5290°)
—5j = E(0.1 — jO.4 + j0.5) = E(0.1 + j0.1)

po— Y S£290 o, 1350y
0.1+,0.1 0.1412£45° )
35462 — 135° .

11 = W =14.182 — 225° A

Step 3: Second source is acting alone, the current flowing through the inductor (i, (t)) is calculated
and the equivalent circuit is shown in Fig. 2.30 with the branch current marked. Apply the node
analysis and find the current. According to the node analysis, the equation (2.50b) is formed.

50.0°—E E E

2 257710
5020° E E E

2 " 10 j25 T iz
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25290° = E(0.1 4 0.42 — 90° + 0.5290°)
25j = E(0.1 — j0.4 + j0.5) = E(0.1 + j0.1)
25j 25290°

= = = 0
= 01401~ Oaatzas = 17734457V
_177.3245° _317732858°
27 j25 7 252900 T 7
10Q g 20
A
- -
I I
o E\, 5020°V
L A

Fig. 2.30: Finding current in the inductor when only 2™ voltage source acting alone with branch current
direction and node potential marking

Step 4: Finding the sum of the current due to the two sources are acted alone, the calculation is done
as follows.
I + I, = 14.182 — 225° 4+ 70.92£ — 45°

I, +1, = —10.026 + j10.026 + 50.148 — j50.148
I + I, = 40.122 — j40.122 = 56.74£ — 45°

The total current of the individual sources could be written in time domain as i, (t) + i,(t) =
56.74 cos(5t — 45%)A . It is equal to the current flowing through the inductor when both sources
acting together that is given in step 1. Hence the superposition theorem is proved.
Example 2.9: Find the current (I) flowing through the resistor using superposition theorem for the circuit
shown in Fig.2.31.

50

A4

—
I

10v
30cos(10r+0°)V @ Q)

Fig. 2.31: Finding current in the resistor using superposition theorem for Example 2.10
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Solutions: The circuit shown in Fig.2.31 has the two voltage sources, one is ac voltage source and another
is dc source. The ac source is represented in phasor form 30 cos(10t + 0°) = 3020°.

50

MV

e
I

3020V

Fig. 2.32: Finding current in the resistor when 1% voltage source acting alone

50

AA

< 1

2

Ok

Fig. 2.33: Finding current in the resistor when 2™ voltage source acting alone

Step 1: Both ac and dc sources are acting together, the current flowing through the resistor is not
possible to calculate as a single circuit, since multiple frequency sources present in the circuit.
Hence the method of finding the response is discussed in the following steps.

Step 2: First voltage source is acting alone, the current flowing through the resistor (i;(t)) is calculated
and the equivalent circuit is shown in Fig. 2.32 with the branch current direction and equivalent
impedances. According to the node analysis, the equation (2.51) is formed.

=4
I = -
L= 30400
75

Step 3: Second voltage source is acting alone, the current flowing through the inductor (i,(t)) is
calculated and the equivalent circuit is shown in Fig. 2.33 with the branch current direction and
equivalent impedances.

=640 A
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V;
Izz?z

10
12 =?=2A

Step 4: Current flowing in the resistor when both sources acting together is equal to the sum of
current flowing through the resistor (i, (t)) due to the 1% voltage source and the current flowing
through the resistor (i, (t)) due to the 2" % voltage source. As per the equivalent circuit, I; is in
the direction of I and the I, is in the opposite direction of I. Hence

I = 11 - 12
i(t) =i (t) —iy(t) = 6cos(10t +0°) —2 A
2.6 THEVENIN’'S THEOREM

The Thevenin’s theorem states that a linear two terminal circuit is replaced by an equivalent circuit that
consists of the voltage source (V) in series with the impedance (Z;). Where V;, is the open
circuit voltage at the open-ended terminals and Z,, is the equivalent impedance of the circuit from
the open-ended terminals when all the voltage sources are short circuited and current sources are
open circuited or replaced by their internal impedances. Z;, is also named as Thevenin’s
impedance.

The statement is described in Fig.2.34. The linear circuit is represented as the Thevenin’s circuit which
is equal to the equivalent voltage source (V) in series with the equivalent impedance (Z;;,). The
load impedance is now replaced as Z; that is shown in Fig.2.35. The current through the load
impedance is calculated that is shown in equation (2.51).

I, =2 (2.51)

T ZntZy

Example 2.10: Find the current (I) flowing through the load impedance (Z1) using Thevenin’s theorem
for the circuit shown in Fig.2.36.

Solutions: The circuit shown in Fig.2.36 is represented with its impedance values as shown in Fig. 2.37.
The angular frequency w =50Hz. The impedances and source voltage in phasor form are
calculated as follows.

X, = jwL,in Q = j(50)(0.4) =j20Q
X, = ,%c in Q = 1/j(50)(0.667)=-j30Q
150 sin(50t + 30°) = 1502(—90° + 30°) = 1502 — 60°
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&
Linear circuit consists with +
many voltage & c1.1rre.nt v Load
sources and the circuit
components (R,L,C) .
Q

[ L]

<

Vi
Load

=X ]

Thevenin's Equivalent Circuit

Fig. 2.34: The transformation of the linear two open-ended circuit into the Thevenin’s equivalent
circuit

Vi

®
' Q
Thevenin's Equivalent Circuit

Fig. 2.35: Thevenin’s equivalent circuit with load impedance to find the load current
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40Q 0.667F P
MWA—€ .
AN I
0.4H &
150 sin(50t+30%)V
L
Q

Fig. 2.36: Finding current in the load impedance using Thevenin’s theorem for Example 2.11

400 -j30C2

P
MA— T

1507-60°V
j20Q

°
Q

Fig. 2.37: Finding current in the load impedance using Thevenin’s theorem for Example 2.11

Stepl: Finding the equivalent impedance or Thevenin’s impedance (Z;;) of the circuit — the load
impedance is removed. The voltage sources are short circuited and the current sources are open
circuited. After implementing these points, the circuit for finding the impedance is drawn and
shown in Fig.2.38. In the given circuit, the 40Q and (-j30Q) are in series. Hence (40-j30) Q is
obtained. That impedance value is in parallel with (j20Q), hence Z,, = (40 — j30) Il (j20).

40Q -j30Q2

Y P
—VW—C o

Zy,

°
Q

Fig. 2.38: Finding Thevenin’s impedance for Example 2.11
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Zip = (40 ~j30) x (j20) _ 600 +/800 24.25267.16°Q = (9.412 + j22.35)Q
‘T 40—j30+j20 © 40—j10 T ' =0 j22.35)
Step2: Finding the equivalent voltage or Thevenin’s voltage (V,;) of the circuit — the load impedances
are open circuited. With that concept, the circuit is drawn and shown in Fig.2.39. The Thevenin’s
voltage is also known as open circuited voltage which means that the voltage across the open-

ended load terminals.

40Q -ji"(}ﬂ P
NN—C } +
150/-60°V Vo,
j20Q i
® __
Q

Fig. 2.39: Finding Thevenin’s voltage for Example 2.11
By applying voltage division concept, the voltage across the inductor is calculated. The voltage across
the inductor is equal to the potential of the open-ended load terminals which is the Thevenins’s

_3000230°
" 41.2312 — 14.030

voltage.
1504 — 60° x (j20) 1502 —60° x 20£90°

V., =
th 40 —j30 + j20 40 —j10
Ven = 72.76244.03°V

Step3: Finding the load current of the circuit — the circuit is replaced with the Thevenin’s equivalent
circuit and the load impedance is connected in series with the Thevenin’s equivalent circuit and

the circuit diagram is shown Fig.2.40.

(9.412+j22.35)Q P
Zth L
Iy,
72.76,44.03 v
N
o |
Q

Fig. 2.40: Thevenin’s equivalent circuit with load impedance for Example 2.11

Let us assume Z; = 10(Q; the load current is calculated as follows.



106 | Electric Circuits and Networks

po Ve 7276£44.03°  72.76,44.03° _ 245/ — 4.9994

L Z+ 27, (9412 +j2235) +10 ~ 29.6£49.020 ~ '

IfZ, = (10 + j10)Q, the load current is

po Ve 72.76244.03° _ 72.76244.03°  72.76,44.03°
LT Z+ 27, " (9.412 +j22.35) + (10 +j10) ~ 19.412 +j32.35 ~ 37.73259.03°

=1.932—15%4

Example 2.11: Find the current (Ir) flowing through the load impedance (Z1) using Thevenin’s theorem
for the circuit shown in Fig.2.41.

H4Q
B G & 6 A T

4Q -joQ
P |/

N !\

0
16520°7 @ N §IOQ

Q

Fig. 2.41: Find the load current of the circuit using the Thevenin’s theorem of Example 2.12

Solutions: The circuit shown in Fig.2.49, find the Thevenin’s impedance and Thevenin’s voltage in the
following steps.

Stepl: Finding the equivalent impedance or Thevenin’s impedance (Z;;) of the circuit — the load
impedance is removed. The voltage sources are short circuited and the current sources are open
circuited. After implementing these points, the circuit for finding the impedance is drawn and
shown in Fig.2.42a. In the given circuit, the 10Q and (j4Q) are in parallel and the equivalent
impedance (Zeqi) is obtained that shown in Fig.2.42b. The impedance (Zeq) and -j6Q2 are in
parallel, the equivalent impedance (Zcq) is calculated and mentioned in Fig.2.42c. Hence Z;), =
(Zegqz) Il (4Q), which is equal to  Zy, = 1.956£ — 36.23°Q.

iQ 3.714 £ 68 .2°,0
e T
Z\'_\q] P
4Q i6Q 40 -jo2
P |/ P Vs
NW—C AVAVAY, !\

(s
Wy
[—3
e}

ﬁ?
(1379-12.56)Q
Z2
-

o}

Q Q Q
(a) (b) (c)
Fig. 2.42: The Thevenin’s impedance of Example 2.12
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Step2: Finding the equivalent voltage or Thevenin’s voltage (V,;) of the circuit — the load impedances
are open circuited. With that concept, the circuit is drawn and shown in Fig.2.43a. The Thevenin’s
voltage is also known as open circuited voltage which means that the voltage across the open-

ended load terminals which is shown in Fig.2.43b.

o 0
oYY
(YY1 '
I, (I4-1)
W@ ¢ NRG
/ 60 10 T-j6Q

(b)
Fig. 2.43: Finding the Thevenin’s voltage of Example 2.12

Q
0 165207 \"~
165207V %\z) D §1og Vi §IOQ
(a)
By applying mesh analysis, two equations are formed as follows.
+16520° — (4 —j6)(I; — I,) — 101, = 0
—(4-j6)(I; —1,) —j4l; =0
After simplification and in matrix form,
[14 —j6 —(4 —1'6)] [11] _ [16540"]
(4—-j6) —(4—jDllL 0
Apply Kramer’s rule, to find the loop currents I; and I,.

I, = (10.59 — j4.5)A

I, = (11.24 — j14.76)A

To find Vu, the circuit shown Fig.2.51b is used. The open-ended terminal voltage or the Thevenin’s
voltage is equal to either by subtracting voltage across 4Q from the voltage source or the addition
of voltage across (-j6)Q2 and (10Q2). The first choice is chosen to solve this problem. Hence the

equivalent diagram is shown in Fig.2.44.
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(I1-1)

_|_

—_—
NN
4Q T
165.0°V

Fig. 2.44: The Thevenin’s voltage calculation of Example 2.12

+165400 - (4’)(11 - 12) - th =0
th = 165400 - (4’)(11 - 12)

V,p, = 172.552 — 13.75° V

Step3: Finding the load current of the circuit — the circuit is replaced with the Thevenin’s equivalent
circuit and the load impedance is connected in series with the Thevenin’s equivalent circuit and
the circuit diagram is shown Fig.2.45.

1.9562-36.23°,0

P
IL
172.55/-13.75V
N
o |
Q

Fig. 2.45: Find the load current of the circuit using the Thevenin’s theorem of Example 2.12
Let us assume Z; = 10(Q; the load current is calculated as follows.
Vin 172.552—13.75° 172.554—13.75°
~Zmn+2, (1577 —j1.156) + 10  11.632— 5.7
IfZ, = (10 +j10)Q, the load current is
Vin 172.554—13.75° 172.554-13.75° 172.55£~13.75°

“Zin+2, (1577 —j1156) + (10 +,10)  11.77 —j8.844  14.562—37.36°
=11.85223.61° 4

2.7 NORTON’S THEOREM

The Norton’s theorem states that a linear two terminal circuit is replaced by an equivalent circuit that
consists of the current source (Iy) in parallel with the impedance (Z)Where I is the short circuit

= 14.832-8.05°A

L

L



Electric Circuits and Networks | 109

current of the open-ended load terminals when it is short circuited and Zy is the equivalent
impedance of the circuit from the open-ended load terminals when all the voltage sources are short
circuited and current sources are open circuited or other sources are replaced with their internal
resistances. The Z) is the Norton’s impedance or short-circuited impedance.

The statement is described as in Fig.2.46. The linear circuit is represented as the Norton’s equivalent
circuit which is equal to the equivalent current source (Iy) in parallel with the equivalent
impedance (Zy). The load impedance is now replaced as Z; that is shown in Fig.2.47. The current
through the load impedance is calculated that is shown in equation (2.52).

P
L4

_l_

Linear circuit consists with
many voltage & current

.. A\Y Load
sources and the circuit
components (R,L,C) L
@
Q
T P
: e
oS | Y Load
: NCD N :
= S
' Y |
. ' Q

Norton's Equivalent Circuit

Fig. 2.46: The transformation of the linear two open-ended circuit into the Norton’s equivalent circuit

ZN
Zn+Z)
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Norton's Equivalent Circuit

Fig. 2.47: Norton’s equivalent circuit with load impedance to find the load current

40Q -P0Q

P
AN—( -

150/-60°V \ /
j20Q

®
Q

Fig. 2.48: Finding Norton’s equivalent circuit for Example 2.13

Example 2.12: Find the current (I) flowing through the load impedance (Zt) using Norton’s theorem for
the circuit shown in Fig.2.36.

Solutions: The circuit shown in Fig.2.36 is represented with its impedance values as shown in Fig. 2.48.
The angular frequency w =50Hz. The impedances and source voltage in phasor form are
calculated as follows.

X, = jwL,in Q =j(50)(0.4) =j20Q

X, = ,%c in Q = 1/j(50)(0.667)=-j30QV

150 sin(50t + 30%) = 1502(—90° + 30°) = 1502 — 60°, V
Stepl: Finding the equivalent impedance or Thevenin’s impedance (Z;;) of the circuit — is explained
(Ref. Example 2.11).

_ (40 —;30) x (j20) _ 600 + j800
T 40 —j30+,520 40 —j10

Step2: Finding the Norton’s current or short circuit current (Iy) of the circuit — the load terminals

are short circuited after removing the load impedances. Then the current flowing in the short-
circuited load terminals is known as the short circuit current. With that concept, the circuit is

= 24.25467.16°Q = (9.412 + j22.35)Q
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drawn and shown in Fig.2.56. The Norton’s current is also known as short circuited current which
means that the current flowing through the short-circuited load terminals.

According to the diagram, it is understood that the inductive impedance is negligible since it is in parallel
to the short-circuited terminals. Hence the current flowing through the short-circuited terminals is
calculated as follows.

. 1502 — 60° _ 150z - 60°
N7 40 -j30 T 502 — 36.86°
Step3: Finding the load current of the circuit — the circuit is replaced with the Norton’s equivalent

circuit and the load impedance is connected in parallel with the Thevenin’s equivalent circuit and
the circuit diagram is shown Fig.2.49.

=32£-23.14% A

P
@
c I
® i
N -
Q =)
3/-2314°4 & 3 &
5
2
@
Q

Fig. 2.49: Norton’s equivalent circuit with load impedance for Example 2.13

Let us assume Z; = 10Q; the load current is calculated by applying current division techniques as

follows.
PR/ Ry (9412 +j2235) 3, 23149 24.25,67.163°
L= N> ze+Z, ' (9.412 +j22.35) + 10 ' 29.6£49.020

= 2.4572—4.99°

IfZ, = (10 +j10)Q, the load current is
Zn (9.412 + j22.35)
I, = Iy X =32 -23.14% x
L= Nz +2Z, (9.412 + j22.35) + (10 + j10)
24.25,67.163°
=3,-2314"x ———— _—_ =1928,-15%4

37.734£59.03°

Example 2.13: Find the current (I.) flowing through the load impedance (Z1) using Norton’s theorem
for the circuit shown in Fig.2.41.

Solutions: The circuit shown in Fig.2.42, find the Norton’s impedance and Norton current in the
following steps.
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Stepl: Finding the equivalent impedance or Norton’s impedance (Z ) of the circuit — the calculation
part is explained (Ref. Example 2.11). The Norton’s impedance is Zy = 1.956£ — 36.23°Q =
(1.577 —j1.156)Q.

Step2: Finding the short-circuited current or Norton’s current (Iy) of the circuit — the load
impedances is removed and it is short circuited. With that concept, the circuit is drawn and shown
in Fig.2.50a. The impedances Zg = (j4Q), Zp = (—j6(Q2) and Z, = (10Q) are connected in star
connection. The equivalent delta connected impedances are calculated as follows and the
incorporated delta connected impedances is shown in Fig.2.50b. By looking Fig.2.50b, the
impedance connected between P and Q is invalid (since it is connected in parallel with the short-
circuited terminals) and the impedance Zzp and 4Q are in parallel. The parallel resultant impedance
(Z}p) is marked in Fig.2.50c.

Z ZnZp = ZpZp + ZpZo + ZpZo = ((4)(=j6) + (10)(j4) + (10)(—j6) = 24 — j20

% ZrZp _ 24—j20

Znp =220 _ 31242 — 39.8°0=(2.4-2)Q
Zot 10
Y ZuZp 24—j20 31242 —39.8° .
Zrg =" = =g - /814-1298°0
Y ZuZp 24—j20 3124z —39.8° . _
R TRy - 5.2250.2°0 = (3.33 +j4)Q

2 2 ) = (24—j2) x4 96—j8 1252—39.8°
Rp TR T0R4-j2)+4 64—j2 672—1735
= (1.723 — j0.712)Q

= 1.8652 — 22.45°Q

4Q 62958,
| —
(YY1 L 62958,0
3.782-32°Q ]
Q -f’69
R8N w |
R AN 2024—164§QP
c R
165207 [~ Iy )
C)  / 10Q 6500 | Iy =
Y \'J 1650017 |~ Iy
¢
(=2}
Q Q Q

(a) (b) (c)
Fig. 2.50 Finding the Norton’s current of Example 2.14
The Norton’s current is calculated as follows.
16520°

Iy = = 88.471422.45°A
N 1.8652 — 22.45°
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Step3: Finding the load current of the circuit — the circuit is replaced with the Norton’s equivalent
circuit and the load impedance is connected in parallel with the Thevenin’s equivalent circuit and
the circuit diagram is shown Fig.2.51.

P
L
c I
9
81.6816.48 4 * -
2 N
=
wn
@
Q

Fig. 2.51: Find the load current of the circuit using the Norton’s theorem of Example 2.14

Let us assume Z; = 10Q; the load current is calculated by applying current division techniques as

follows.
B Iy . (1.577 — j1.156)
b= Iy > = 8BTS X e T T56) + 10
= 88.471222.45° x 19562 —36.247 _ 14.82.—8.096°4
e : 11.632—-570 ~ ~ 7 :

IfZ, = (10 +j10)Q, the load current is

I =1y x =N _ 88.471,22.450 x (1.577 ~ j1.156)
L=z +z, ' (1.577 — j1.156) + (10 + j10)
1.9562 — 36.24°
= 88.471£22.45° x =11.88223.57°4

14.56,—37.36°
2.8 MAXIMUM POWER TRANSFER THEOREM

The maximum power transfer theorem is applicable to both ac and dc circuits. The maximum power is
transferred from circuits to the load when the load resistance is equal to the Thevenin’s resistance
of the circuit in a dc circuit. The power components in an ac circuit are the real power, the reactive
power and apparent power. There is another term called “average power”. Average power is
defined as the integral of the instantaneous power over a time period. The maximum power
transferred from ac circuits to the load is the average power only. Hence this theorem is also
denoted as maximum average power transfer theorem for ac circuits.

The linear ac circuit is connected to the load impedance which is shown in Fig.2.52. The first step is to
find the Thevenin’s equivalent model of the linear ac circuit that has to be connected to the load
impedance. The maximum power is transferred to the load impedance only when the load
impedance is the conjugate of the Thevenin’s impedance. The concept of the maximum power
transfer theorem is shown in Fig. 2.53. In order to prove the theorem, the Thevenin’s equivalent
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circuit is connected to the load impedance as shown in Fig.2.43 (Ref. Sec.2.6). The current flowing
through the load impedance is expressed in equation (2.51) (Ref. Sec.2.6).

Where, Z;y, = Ry + jXin; Z, = R, + jX;. Hence the load current could be represented as in equation
(2.53).

Ven Ven
I, = —" — = £ (2.53)
Ren+jXentRL+jXy,  (Rept+RL)+j(Xen+XL)

The average power consumed by the load is calculated using the equation (2.54).
1
PL =E|IL|2RL (254)
1 Va2 R
2R RO+ Ko + X2

Py

[ Lo-]

Linear circuit consists with
many voltage & current 4.
sources and the circuit
components (R,L,C)

<

Load
impedance

oX

P
L

Maximum Power
Transferred to Load

Van : 7 =7y
: Load
: impedance

.
Q

Thevenin's Equivalent Circuit

Concept of Maximum Power Transfer Theorem

Fig. 2.52: The concept of the maximum power transfer theorem for ac circuits
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P
¥ I

Vi

: v o

o

Thevenin's Equivalent Circuit

Fig. 2.53: Thevenin’s equivalent circuit with load impedance to find the maximum power transferred to
the load circuit

For finding the maximum power consumed by the load resistance, the first order derivative of load power
w.r.t the load impedance is set to zero and the second order derivative should be less than zero.
Hence the first order derivative w.r.t load resistance and w.r.t. load reactance is expressed in
equations (2.55) and (2.57) respectively.

p =1 Ve R, = ViR, [(Ren + RL* + (Xen + X171
PT2Rp +R)P+ X + X2 2 T T
P V2R _ V32
m = 5t CDIRen + R)? + Ko + X1)?172(2(Ren + RL)) + 32 [(Ren + R1)? +
KXen + X)) 171 =0 (2.55)
aﬂ — l _szh l Vtzh _
ORy 2 [(Ren+Rp)*+(Xen+Xp)2)? Ri(2Ren + R0)) + 2 (Rep+R1)2+ (X +X1)?
0P, _ 1 ~Vin 1 VAI(Ren+RL)*+(Xen+X1)%] _
OR, 2 [(Ren+Rp)2+(Xep+X1)?)? Ri(2Ren + R0)) + 2 [(Ren+Ry)*+(Xen+X1)?12 0
V&R (2(Ren + R)) + VEI(Ren + RL)? + (Xen + X,)?] =0 (2.56)
P V2R _
ﬁ = %L(—l) [(Ren + R + (Xen + X)?172(2KXen + X)) = 0 (2.57)
op, _ 1 Vi _
90Xy, 2 [(Ren+Rp)*+(Xen+Xp)2)? R (2(ien + %)) = 0
Xth + XL = 0
X, = —Xn (2.58)

By substituting (2.58) in (2.56),
—VE5RL(2(Ren + R)) + VA[(Ren + RL)* + (Xen — Xen)?1 =0
—VZR,(2(Rep + R,)) + V5 (Ren + R)? =0
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Vi ((Ren + R)(=2R, + (Ren + R)) = 0

(Ren—RL) =0

R, =Ry, (2.59)
By substituting (2.58) and (2.59) in Z;,

Z, =Ry +jX, = Ren +j(—=Xen) = Ren — jXen = Zin

Zy, =1,
The maximum power is transferred to the load impedance only when the load impedance is the conjugate

of the Thevenin’s impedance. In order to calculate the maximum power, the condition for the
maximum power is substituted in equation (2.54).

1 Va3
PLmax =3 2 2 Rth
2 (Ren + Ren)? + (Xen — Xen)

p Ll Vh o, 1 Ve Vi
tmax ™ 2 (Ryp + Ren)? th 2 (2Rep)? " B8Ry,

*The equation (2.60) produces the maximum power consumed by the load. In this equation, the
obtained V;j, represents the maximum value of the voltage. In this book, all phasor is
represented as maximum voltage only.

Vrms

If the readers want to convert this as the rms value, V,,,, = N Hence the equation (2.63) based on

the rms value could be represented as follows.

v
Vthmax = :’;%ns
_ |Vthmax|2 _ |Vthmax|2 { 1 }_ |Vthrms|2
Lmax = 8R,, 2 4R}~ 4Ry
_ Vol (2.60)
Lmax — 8R:p, .

From (2.56),
—VZRL(2(Ren, + R)) + VAR + RL? + (Xen + X)?1=0
~R.(2(Ren + Ry)) + [(Ren + RL)* + (Xen + X,)] = 0
—2R, Ry —2R? + (R + R)* + (X + X,)2 =0
—2R,Rep, —2R? + R3%, + R? + 2R Rip + (Xen +X,)? =0
RZ —RE+ (Xen +X,)* =0
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RE = RE + (Xen + X1)?

R, = \/R?h + (Xen + X1)?

When the load is purely resistive load, then, X; = 0; Hence,

R, = ’R?h + (Xen)?

Ry = |Zyl

It is understood that the maximum power is transferred to the load when the load resistance is equal to
the magnitude of the Thevenin’s impedance for the resistive loads.

Example 2.14: Find the load impedance of the circuit shown in Fig.2.36 that absorbs the maximum
power from the circuit. Also calculate the maximum average power consumed by the load.

Solutions: The circuit shown in Fig 2.36 is represented with its impedance values as shown in Fig. 2.37.
The angular frequency w =50Hz. The impedances and source voltage in phasor form are
calculated as follows.

X, =jwL,in Q =j(50)(0.4) =j20Q
Xo = 2, in 0 = 1/1(50)(0.667) =300
150sin(50t + 30°) = 1504(—90° + 30%) = 1502 — 60°,V
Stepl: Finding the equivalent impedance or Thevenin’s impedance (Z;;) of the circuit
Zep = 24.25267.16°Q = (9.412 + j22.35)Q
(Ref. Sec 4.6 — Example 2.10)
Step2: Finding the Thevenin’s voltage of the circuit
Vin = 72.76£44.03°V
(Ref. Sec 4.6 — Example 2.10)

Step3: Obtaining the Thevenin’s equivalent circuit with Thevenin’s voltage and Thevenin’s
p g q g

impedance
(9.412+22.35)Q N
Iy
72.76,44.03°V
N
|
Q

Fig. 2.54: Thevenin’s equivalent circuit with load impedance of Example 2.10 (Repetition of Fig. 2.40)
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(Ref. Sec 4.6 — Example 2.10)
Step4: Calculate the load impedance

According to the maximum power transfer theorem, the load impedance is the conjugate of the
Thevenin’s impedance.

Z, =277 =9.412 —j22.35
StepS: Calculate the maximum power to the load impedance
According to the maximum power transfer theorem,

b |Ver |2 _ 72.762

max - 8R,, 8x9.412

Example 2.15: Find the load impedance of the circuit shown in Fig.2.41 that absorbs the maximum
power from the circuit. Also calculate the maximum average power consumed by the load.

=70.31W

Solutions: The circuit shown in Fig.2.41, find the Thevenin’s impedance and Thevenin’s voltage in the
following steps.

Stepl: Finding the equivalent impedance or Thevenin’s impedance (Z;;,) of the circuit
Zep = 19562 — 36.23°Q = 1.577 — j1.156Q
(Ref. Sec 4.6 — Example 2.11)
Step2: Finding the Thevenin’s voltage of the circuit
Vip = 172.5524-13.75°V
(Ref. Sec 4.6 — Example 2.11)

Step3: Obtaining the Thevenin’s equivalent circuit with Thevenin’s voltage and Thevenin’s

impedance

1.956/-36.23",Q P

Zth
I,
172.55£-13.75"V
N
o |
Q
Fig. 2.55: Thevenin’s equivalent circuit with load impedance for Example 2.11 (Repetition of Fig.

2.53)

(Ref. Sec 4.6 — Example 2.11)
Step4: Calculate the load impedance
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According to the maximum power transfer theorem, the load impedance is the conjugate of the
Thevenin’s impedance.
Z, =277 = (1.577 + j1.157)Q
StepS: Calculate the maximum power to the load impedance
According to the maximum power transfer theorem,
b |Ver |2 _ 172.552
max - 8R.,, 8x1.577

Example 2.16: Find the load resistance of the circuit shown in Fig. 2.56 using maximum power transfer
theorem. Also calculate the maximum power absorbed by the load.

= 2359.9W = 2.4kW

100 0.1F Ry,
A I oy
10sinl 07V (D @ 20c0s(107+10°)
1
§ = 5cos10t 4
|

Fig. 2.56: Find the load resistance and maximum power absorbed by the load of Example 2.18 (Similar
to Example 2.15)

Solutions: The circuit shown in Fig.2.56, find the Thevenin’s impedance and Thevenin’s voltage.
10sin10t = 102 —90°,V;20 cos(10t + 10%) = 20210°,V; 5cos(10t) = 5200, 4;

The inductive impedances and capacitive impedances are to be calculated as follows.
X, =jw L inQ =j5Q
Xe =1/(w0),in Q=-j1Q

Stepl: Finding the equivalent impedance or Thevenin’s impedance (Z;;,) of the circuit
Zen = (2 +j3)Q = 3.6456.31°Q.
Zen = |Zen| 26y, = 3.6£56.31°Q.
(Ref. Sec 4.7 — Example 2.15)

Step2: Finding the equivalent voltage or Thevenin’s voltage (V) of the circuit
Vin = —5.71 +j9.49 = 11.072£121.03°V
(Ref. Sec 4.7 — Example 2.15)

Step3: Finding the Thevenin’s Equivalent circuit
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3.65631°,Q P
110742103’V
R,
Q

Fig. 2.57: Thevenin’s’ equivalent circuit of Example 2.18
Step4: Finding the load resistance

When the load is resistive, the load resistance is calculated as follows according to the condition of
maximum power transfer theorem.

R, = |Zy| = 3.6Q
StepS: Finding the maximum power absorbed by the load resistance
According to the maximum power transfer theorem,
b M _ 11.072
max 8RR, 8x3.6
2.9 RECIPROCITY THEOREM

The reciprocity theorem states that the current flowing through any branch (first branch) of the circuit
due to a voltage source or a current source is equal to the current flowing through the branch
(source branch) when a voltage source or a current source positioned at the first branch.

= 4.255W

This statement is explained in the following section with the example circuit shown in Fig.2.58. The
current flowing through the branch of resistance R, is calculated by either mesh or node analysis.

R, Q CF
4
AN

Acoswt V ;Rz O
I 9

Fig. 2.58: Find current I using reciprocity theorem
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First step is to convert the source into phasor form 4200,V and the impedances are found in Q. Hence it
is found as jX; Q,—jX:Q. By applying these values, the circuit is shown in Fig.2.74.

R, Q Xo O
AN

NN

Acoswt V
1, R, Q

O IXI

Fig. 2.59: Find current I for verifying the reciprocity theorem

Total impedance of the circuit in Fig. 2.58 is found in equation (2.61). R, and (-jX) are in series, it is
(R, — jX¢). This impedance is in parallel with (jX;) and then in series with R;.
JX Ry + Xc X},
(Ry +j(XL — X¢))
_RiRy+j(X, — X)) + X, R, + XX,

Zeql = R1 +

Zogy = .
eat (R, +j(X, — X¢))
_ RyRy+XcXp+jRy(Xp—Xc)+jXLR,
Zeq1 = (Ry+J(XL—X()) (2.61)
The total current in the
_Az0° A20° * (Ry +j (X, — X))
7 Zet  RiRy+ XXy + iR (X, — Xe) +jXLR;
AL0° (R; — jX¢)
L=——=1Iy* -
Zeqr (R, +j(X, — X¢)
L A20°* (Ry + (X, — X)) . (R, — jX¢)
Y7 RyRy + XX, 4 jRi (X, — Xo) + jXLR, (Ry + (X, — X¢)
0* :
I 420 +G%,) (2.62)

RiRy +Xc X +JjR1 (XL —Xc)+jXLR,

Second step is the voltage source is placed to location where the current I; is found and the existing
source branch is short circuited and the current flowing through that short-circuited branch is
calculated and corresponding circuit is shown in Fig.2.60.
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R, Q

*Ia
I"

AcosotV

O X

Fig. 2.60: Find current I, in the source branch for verifying the reciprocity theorem

Total impedance of the circuit in Fig. 2.75 is found in equation (2.63). R; and (jX,) are in parallel, it is
in series with (R, — jX).
Zeqz = (R — jX¢) + (R I GX1))

7 = RiRy+Xc X +jR1 (XL —X))+JXLR,
eq2 (Ry+jXL)

(2.63)
The total current in the
I, = A20° _ A20° *. Ry —j X¢) .
Zeqz  RiRy + XcX, + jRi (X, — Xc) + jX.R,
Az0° GX.)
2 =qu= 2 ¥ (Ry +jX.)

A20% x (R, —j X¢) UX.)

= . . * .
7 RyRy + XX, +jRy (X, — X)) + jX,R, (Ry +jX,)
A20%x(jXL)
12 = X )
RiRy+Xc X +JjRy (X —Xc)+JX R,

(2.64)
Hence the current obtained from the circuit shown in Fig. 2.74 and Fig.2.75 is shown in equation (2.62)

and (2.64) respectively. It is understood that both currents are equal. The reciprocity theorem is
proved.

Example 2.17: Prove the reciprocity theorem and find the current in the circuit shown in Fig. 2.61.
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50 0.02F
NN I8
10cos50tV
|
; [—}
N .
== ==

Fig. 2.61: Find the current I and prove the reciprocity theorem of Example 2.19
Solutions: The circuit shown in Fig.2.76, 10cos50t = 1020°,V

The inductive impedances and capacitive impedances are to be calculated as follows. By incorporating
these values and the circuit is shown in Fig.2.62.

XL1 =](,l) Lll inQ =J25Q
XL2 =](,l) Lz, inQ =J5Q
Xe =1/(wC),in Q=j1Q

5Q -IiIQ
4
I\

Itotl

1020°V

os
osl

Fig. 2.62: Find the current I;
Stepl: Finding the current of the circuit shown in Fig.2.62.
The total impedance of the circuit in Fig.2.62 is calculated as follows.
Zior1 = 5+ (25 1| (5 — j1))Q = j3.448Q = 3.448290°Q.



124 | Electric Circuits and Networks

10200 i
Itotl = m = 1.647,—34.59°4
Jj25 o (25 _ .
= hopy * 55 = 16474-3459° « (E) — 1.419,-34.59°4

Step2: Finding the current of the circuit shown in Fig.2.63. The source is placed to the first branch
(where the current (I1) flowing in the Fig2.62) and the current is found at the source branch
shown in Fig.2.63.

The total impedance of the circuit in Fig.2.63 is calculated as follows.
Ziotz = (G5 —Jj1) + (25 1 5))Q = (4.8 +j4.96)Q = 6.902£45.93°Q.
1020°
= 1.452-45.93°A

ltora = 5507745930 —
j25  1.452-45.93° X 25290°

j— — — _ 0
2 = Itz * 5775, 25.49278.69° 14222-34.62°4
50 10
—AAN I
I\
It0t2
1020°V
TQ.
9}
I S n
i 35

Fig. 2.63: Find the current I»

Step3: Prove of the reciprocity theorem
The current found in Fig.2.62 and 2.63 is remain the same. Hence the theorem is proved.

2.10 DUALITY IN ELECTRIC CIRCUITS

Duality concepts present in electric circuit for the certain parameters and theorems which helps to solve
problems faster. Hence it is a time saving and effective tool for solving an electric circuit. Some
of the dual pairs in an electric circuit is listed as below. During the circuit analysis, two different
circuits have similar equations expect the certain duality elements are interchanged. This
characteristic of interchangeability is known as duality principle. In Table 2.1, the parameter power
is not having the duality parameter. Since power is a non-linear parameter. It is understood that
duality concept is applicable only to the linear elements.

The process of formulating the duality circuit is explained as follows.
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e Find the number of loops in the circuit. Mark the nodes inside that closed loop and number it.
These nodes are named as non-reference nodes.
e  Also mark the ground node outside the circuit.
e Draw a line between nodes that has to pass through an element.
e  For the transformation of voltage and current sources, the polarity of voltage sources and the
direction of current sources are found by following method.
o If the mesh current in the voltage source is in clockwise direction, then the duality has
the current source with the current direction from ground node to non-reference nodes.

Table 2.1 Dual Pairs in an electric circuit

Resistance
Inductance
Voltage
Voltage Source
Mesh

Series circuit
Open circuit
KVL

Thevenin

Voltage division technique

Conductance
Capacitance
Current
Current Source
Node

Parallel circuit
Short circuit
KCL

Norton

Current division technique

Example 2.18: Apply the duality concept and obtain the dual circuit of the circuit shown in Fig.2.64

5Q

0.5F 10Q

M

20V

€ NV

N

Fig. 2.64: The circuit taken for explaining the concept of duality

Solutions: The circuit shown in Fig.2.64, the dual circuit is obtained with the following steps.

Stepl: Mark the node and the concern circuit is in Fig.2.65.
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5Q 0.5F 100

+
2OV<> o' o
T 2H

®
Fig. 2.64: The circuit with marked nodes for explaining the concept of duality

Step2: Draw a line between nodes that has to pass through an element and the circuit is shown in Fig.2.65.
Totally 5 connecting lines are passing through an element in the circuit.

Step3: Voltage source into current source, inductance into capacitance, capacitance into inductance,
resistance R into resistance (no change in the image, but value is 1/R, Q - Series become parallel).
Hence the duality circuit is obtained and the circuit drawn is shown in Fig.2.66.

\%
2H 111
10Y

Fig. 2.65: The connected lines among the nodes for explaining the concept of duality
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(1/10)Q

204 CD 1/5)Q2 SH

NV

Fig. 2.66: The dual circuit of the circuit shown in Fig.2.64 (with the concept of duality)

UNIT SUMMARY

1.

10.

11.

The source transformation is helpful to simplify the circuit analysis by transforming voltage
source into current source and vice versa.

Both the star to delta transformation and the delta to star transformation are discussed and the
examples are proved with transformations.

The mesh/node analysis is formed based on the Kirchoff’s voltage/current law respectively. The
formed voltage/current equations are solved by the Cramer’s rule to find the loop currents/node
potentials respectively. The detailed steps for both analyses are discussed.

The superposition theorem is discussed for the circuit that consists of the sources having single
frequency. The simple problems are solved to understand the concepts.

The Thevenin’s and Norton’s theorem are applicable to both ac and dc circuits. In this chapter,
the theorem is explained for ac circuits. The Thevenin’s equivalent circuit is the Thevenin’s
voltage source in series with the Thevenin’s impedance. The Thevenin’s voltage is the open
circuit voltage observed at the load terminals and the Thevenin’s impedance is the equivalent
impedance of the original circuit which is looked from the open-ended load terminals when the
voltage sources are short circuited and the current sources are open circuited.

The Norton’s equivalent circuit is the Norton’s current source in parallel with the Norton’s
impedance. The Norton’s current is the short circuit current that flows through the short circuited
at the load terminals. Norton’s impedance is the impedance of the original circuit which is looked
from the open-ended load terminals when the voltage sources are short circuited and the current
sources are open circuited.

The maximum power is transferred from the circuit to the load when the load impedance is the
conjugate of the Thevenin’s impedance. The maximum power consumed by the load is equal to
the square of the Thevenin’s voltage divide by the 8 times of the Thevenin’s resistance.

For the resistive load, the load resistance is equal to the magnitude of the Thevenin’s impedance.
The reciprocity theorem is applicable only when the circuit consists of only one source.

The reciprocity theorem states that the current flowing through any branch (first branch) of the
circuit due to a voltage source or a current source is equal to the current flowing through the
branch (source branch) when a voltage source or a current source is positioned at the first branch.
Duality concept will help to solve the problem very quickly.
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EXERCISES

Multiple Choice Questions
1. The equivalent circuit of the given circuit is shown in Fig. 2.67
(B+jHQ

—f

(520°)W @

Fig. 2.67: Source transformation of question 1
a. Current source of 1£-43.13°4 is in parallel with (3+j4) Q
b. Current source of 12£43.13° 4 is in parallel with (3+j4) Q
c. Current source of 12-43.13° 4 is in parallel with (5£-53.13)Q
d. Current source of 1,43.13° 4 is in parallel with (52£-53.13)Q
2. The equivalent circuit of the given circuit is shown in Fig. 2.68
o

0
490" 4 (52450

@
Fig. 2.68: Source transformation of question 2

a. Voltage source of 20,135°V is in series with (3.5+j4) Q
b. Voltage source of 20,135y is in series with (3.5+j4) Q
c. Voltage source of 202 -135°) is in series with 5245°Q
d. Voltage source of 20,135y is in series with 5245°Q

3. Three impedances Zry = (20+j30) Q, Zyg = (10+j10) Q, Zgr = (15+j10) Q are delta-connected
impedances which is shown in Fig.2.69. Find Zg, Zy and Zz.
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Fig. 2.69: Source transformation of question 3
a.Zp = 9.67£41.99 O; Zy, = 7.57253.29 Q; Zy = 3.71241.99 Q
b. Zp =19.67490 Q; Zy = 17.57£3.29 Q; Zg = 13.712£4.199 Q
C.Zr =9.674—41.99Q; Z, = 7.574 —53.290; Zz = 3.712 — 41.99 Q
d. None of the above
4. Find the current flowing through the circuit shown in Fig.2.70.

200 200

A4

1020°V I 520°V

@
Fig. 2.70: Source transformation of question 4
a. 125mA
b. 25mA
c. 12545°mA
d. None of the above
5. Find the voltage and current in the circuit shown in Fig. 2.71.
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5Q v 5Q
L 4

NN NN

0
20210°V l §59

I

Fig. 2.71: Circuit for question 5
a.V=2"2-300V;1 =32 —30°A
b. V =22 £10°V;1 =2 £10°A
C.V =220%;1 = £0°A

d. None of the above
6. Find the current in the circuit shown in Fig. 2.72.
50 v 50
—NWY NN
0 ~
2020V <> l 50 @2049001/

I

Fig. 2.72: Circuit for question 6
al =2z—45°A
b. I =9.4245°A
c.1 =492 —45°A
d. None of the above
7. Find the current in the circuit shown in Fig. 2.73.
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5Q 5Q

NN NN

2020°V
l § 5Q 5Q§ @104900/1

I

Fig. 2.73: Circuit for question 7
a.(1.6+j2)A
b.(1.6 —j2) A
c.(2—-j16)A
d. (2+j16)A
8. Find the load current in the circuit shown in Fig. 2.74 using Thevenin’s theorem.
200

30« Ry,

O S

Fig. 2.74: Circuit for question 8, 9

a. (0.166) A
b. (—0.166) A
c. (-1.166) A
d. (1.166) A
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9. Find the Thevenin’s equivalent circuit of the circuit shown in Fig. 2.74.

150  Ran 30 300 Ry
R, R,
Va=(:20V) c Vau=C-10V)
a. b. C.

10

d.
10. Which circuit shown below is applicable to the reciprocity theorem?
-j1Q
A
® !
521074 20210°,¥ g
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50 -1

NN NN

1
20/10°,V o
50 -j1Q
NN ’\A/\/—\
1020°,V
1

301001 2010°,V 3

50 -I]}Q

NN I

1020°,V
@ 2020°, 7

osu

os!
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11. Obtain the duality circuit of the circuit shown in Fig,2.75.

50 5Q

A NN

20V <+>40V
10H -

Fig. 2.75: Circuit for question 11

10F 10F
IC

[AY I
‘ IX

204 a1
1350 (D 204 404
i (1/5)Q§ 6D sa
b.
10H

204 § ) § 404
5)Q

C. d. None of the above

N,

Answers of Multiple-Choice Questions
1.a 2.d 3.a 4. a 5.b
6.b 7.a 8.b 9.c 10.b 11.a

Short Answer Questions:

1. What is the need of source transformation in the electric circuits?

2. Find out the equivalent star connected impedances of the delta connected impedances
presented in Fig.2.76.
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2030Q 10£-90°Q)

40£60°'Q

Fig. 2.76: Circuit for problem 2

3. Find out the equivalent delta connected impedances of the star connected impedances
presented in Fig.2.77.

Re

Ze | 20230°Q

40260°Q

Be
Fig. 2.77: Circuit for problem 3

4. Differentiate the balanced load and unbalanced load.
5. The balanced star connected load formed with three impedance Z=(3+j4)Q is connected
to the supply. Find the equivalent delta connected load of the star connected load.

6. Find the current flowing the circuit shown in Fig.2.78 using mesh analysis.
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10Q 20Q
‘ NN N

5210V @ . @ 10210V

@

Fig. 2.78: Circuit for problem 6

7. Find the potential across the resistance 5Q of the circuit shown in Fig.2.79 using node
analysis.

10Q2 5Q

NN A4

0
10£0°¥ § 200

@
Fig. 2.79: Circuit for problem 7

8. State: Superposition theorem

9. Define the Thevenin’s voltage, Thevenin’'s impedance.

10. Describe the Norton’s current, Norton’s Equivalent circuit.

11. What is the condition for transferring maximum power from the circuit to load?

12. What is the value of the load impedance when the load is resistive type during the
maximum power transfer condition?

13. State the reciprocity theorem and explain with the simple circuits.

14. Prove the reciprocity theorem to the circuit shown in Fig.2.80.



Electric Circuits and Networks | 137

50 10
mmdVAYAY, dVAVAY,
10Q I
20.10°V

Fig. 2.80: Circuit for problem 14

15. What is principle of duality in electric circuits?
16. List out the dual pairs in an electric circuit.
17. Write the steps to formulate the duality circuit.

Long Answer Questions:

1. Describe the method of converting the star connected impedances into the delta connected
impedances.

2. Discuss the method of converting the delta connected impedances into the star connected
impedances.

3. Explain the steps to be performed in the source transformation method with suitable
examples.

4. For the circuit shown in Fig.2.81 with the angular velocity of “0”, apply the mesh analysis
procedure and find the loop currents.

R1 c1 L2
(
C

000

0
n<ey,v § V00,V
L1 R2

Fig.2.81: Circuit for problem 4

5. For the circuit shown in Fig.2.81 with the angular velocity of “0”, apply the node analysis
procedure and find the node potentials.
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6. Derive the condition for the maximum power transfer from the circuit to the load. Also
calculate the maximum power consumed by the load.

7. Prove the reciprocity theorem with suitable example.

8. Explain the concept of duality with example circuit.

Numerical Problems

1. Find the current flowing through the inductor of the circuit shown in Fig. 2.82 if the circuit

operates at 50Hz. Solve using source transformation method.

50
‘ VAR

i

l 4mH
10£90° 4 50

,‘\ 10uF

Fig. 2.82: Source transformation method of problem 1

2. Find the voltage across the resistance as the circuit shown in Fig. 2.83 using source
transformation method.

O

50 4Q —j15Q
% 0 +
10Q
10245 Vx
50

Fig. 2.83: Source transformation method of problem 2

3. Find the current | flowing through impedance Z4 shown in Fig.2.84 using (a) Mesh
analysis (b) Node analysis methods. Verify the results.



Electric Circuits and Networks | 139

(5+j2)Q2 (3+j4)Q2

(10-j15)Q

9 5/-45y

L 4
Fig. 2.84: AC network for node and mesh analysis of problem 3

4. Find the voltage across the impedance as the circuit shown in Fig. 2.85 using (a) source
transformation method (b) Node analysis (c) Mesh analysis

! ( j{ ) 2,154

Fig. 2.85 AC network for problem 4

5. Find the current flowing through the inductance of the circuit shown in Fig. 2.86 using

(a) Node analysis (b) Mesh analysis. (Hint: Convert the sinusoidal into the phasor form,
Calculate the inductive impedance and the capacitive impedance).

B+j4)Q2

5,200 4 T

U(E+9)
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10Q2 10F

NN———

25sin2¢t V S5cos2tV

HS0

@
Fig. 2.86: AC network for node and mesh analysis of problem 5

6. Find the current flowing through the resistor of the circuit shown in Fig. 2.87 using
superposition theorem

5Q

M

—>

I
_ 0 201
20sin(10t+07),V |~~~

Fig.2.87: Circuit for problem 6

7. Findthe voltage across the inductor as the circuit shown in Fig. 2.88 using superposition
theorem. (Hint: Convert the sinusoidal into the phasor form, Calculate the inductive
impedance and the capacitive impedance).

0.5F 50

[ A

+ 0
20sin(10r +20°), 4 C‘D @ 20cos(10r+107),V

HI

Fig.2.88: Find the voltage across the inductor using superposition theorem of Problem 7
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8. Find the load current of the circuit shown in Fig. 2.88 using Thevenin’s theorem.

9. Find the load current of the circuit shown in Fig. 2.88 using Norton’s theorem.

10. Find the load current of the circuit shown in Fig. 2.89 using Thevenin’s theorem and
Norton’s theorem.

0.5F 50

—¢ M

20sin(50+20°), 4 (D ng“’Q @ 20c0s60:+1¢),V

HI

Fig.2.89: AC Circuit for problem 10

11. Find the load resistance of the circuit shown in Fig. 2.90 using maximum power transfer
theorem.

0.5F 50
Py 4
[C N

20sinG0¢ +20")4 CD § R @ 20cos(G01-+10°)7

HI

Fig.2.90: AC circuit for problem 11

12. Find the load resistance of the circuit shown in Fig.2.91 using maximum power transfer
theorem. Also calculate the maximum power absorbed by the circuit.

200

D 3.

Fig.2.91: AC circuit for problem 12
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13. Find the load impedance of the circuit shown in Fig.2.92 using maximum power transfer

theorem. Also calculate the maximum power absorbed by the circuit. (Hint: Two
frequency sources present in the circuit. Obtain two Thevenin’s equivalent circuit and
two load impedances and two maximum power will be obtained).

0.5F 50

€ NN

20sin(10r+20°) 4 QD @ @ 20c0s(10t+30°)

Fig.2.92: Find the load impedance using maximum power transfer theorem of Problem 13
14. Find the current flowing any element of the circuit shown in Fig. 2.93 using reciprocity

theorem.
5Q 0.5F 50

— A T AN

20sin(10t+200),V@
2H

Fig. 2.93: AC circuit for Problem 14

18. Find the duality circuit for the circuit shown in Fig.2.93.

PRACTICAL

1.

2.

3.

Use PSpice to determine the current flowing through the inductor for the circuit shown
in Fig. 2.84.

Use PSpice to determine the current flowing through the resistor for the circuit shown
in Fig. 2.85.

Apply PSpice to find the current flowing through the capacitor for the circuit shown in
Fig. 2.88.

Use PSpice to determine the voltage across the resistance for the circuit shown in Fig.
2.89. Verify the results.

Use PSpice to determine the voltage across the resistance for the circuit shown in Fig.
2.90. Verify the results.

Apply PSpice for the reciprocity theorem circuits and verify the results.
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KNOW MORE

L.

Example 2.11: Find the Thevenin’s equivalent circuit for rhe circuit shown in Fig. 2.41
[Note1: The inductance and capacitance values are calculated from the reactance

o XX 4 X = —i60 = =1
vallies. X, =jAaGL === 2nf = I 0.0127H; X, = —j6Q; C = Yoo = Xeznf =
L
0.0127
"R2 Ci
SINE(O 165 50) w2 4 .53m _R1
AC1650 / -
:__ R3_— <10
50,
;tran 10

.aclin 10 50 50

Fig. 2.94: LTSpice circuit model for the example 2.12

| --- AC Analysis ---

frequency: 50 Hz

V(n001) : mag: 165 phase: 0° voltage

'V (n002) : mag: 131.87 phase: =-38.3661° voltage

'V (n003) : mag: 148.393 phase: -8.02477"° voltage

I(Ccl): mag: 12.4974 phase: -35.4623° device_ current
I(Ll): mag: 25.6762 phase: -36.9532° device_current
I(R3): mag: 14.8393 phase: -8.02477° device current
I(R2): mag: 6.8707 phase: -131.081° device current
I(R1l): mag: 13.187 phase: -38.3661° device current
I(V2): mag: 27.0531 phase: 157.72* device current

Fig. 2.95: LTSpice AC analysis of the example 2.12

When the load resistance is 10Q, the load current (current through R3 resistance) is

14.832—8.02°A that is shown in Fig.2.95. The value is equal to the theorical value
obtained in example 2.11.
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L1
00
0.0127
R2 ., Ca
SINE(0 165 50) | 4 /] .53m L
AC1650 / \/ >
L) Vi, <10

Fig. 2.96: LTSpice circuit for Thevenin’s voltage calculation of the example 2.12

Thevenin’s voltage is measured at node V3 by removing the load resistance and the
corresponding LTspice circuit is shown in Fig.2.96. The ac analysis of this circuit is shown
in Fig.2.97. The highlighted voltage is the Thevenin’s voltage which is equal to the value
obtained in example 2.11.

--- AC Analysis ---

frequency: 50 Hz

V(n001) : mag: 165 phase: 0° voltage
V(n002) : mag: 115.299 phase: -22.9804° voltage
V(n003) : mag: 172.62 phase: -13.7344" voltage

I(Cl): mag: 10.2679 phase: -B6.2521"° device current
I(L1l): mag: 18.5705 phase: -52.5734° device current
I(R2): mag: 10.2679 phase: -86.2521° device_ current
I(R1): mag: 11.5299 phase: -22.9804° device current
I(V2): mag: 11.5299 phase: 157.02° device current

Fig. 2.97: AC analysis of the LTSpice circuit presented in Figure 2.96 of the example
2.12
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3 Three Phase Gircuits

UNIT SPECIFICS
Through this unit we have discussed the following aspects:

e Phasors and complex representation of three phase supply
e  Phase sequence and polarity

o Types of three phase connections: star, delta

o Line and phase quantities

e Loads: balanced and unbalanced load

e Power: active, reactive and apparent

RATIONALE

The single-phase systems are discussed in the previous chapters. For increasing the power
generation and transmission, there is a need for the new system model. Two phase system model
was developed and the angle between those windings is 90°. Whereas, the angle is 120° in the three-
phase windings of the three-phase systems. Three-phase power supply is generated using a three-
phase generator. Even the higher order supply systems are available which could be chosen based
on the applications. But the three-phase systems are the basic for the higher order systems and it is
more efficient, requires less material for the given power capacity and is low cost than the single-
phase systems. Hence it is necessary to study the three-phase systems.
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PRE-REQUISITES

Vector calculus

Single-phase systems

UNIT OUTCOMES

List of outcomes of this unit is as follows:

U3-0O1: Understand the three-phase system representation and terminology
U3-02: Describe the types of connection: star and delta and their concepts
U3-03: Describe the balanced and unbalanced loads

U3-O4: Realize the power calculation in three-phase systems

U3-05:  Apply vector calculus to solve complex problems

Unit-3 EXPECTEDMAPPINGWITHCOURSEOUTCOMES

(1-WeakCorrelation; 2-Mediumcorrelation; 3-StrongCorrelation)

Outcomes
co-1 | co-2 Cco-3 co-4 CcO-5

U3-01 - - 2 -
U3-02 1 1 2 2 -
U3-03 2 1 3 1 -
U3-04 - - 3 1 -
U3-05 1 1 3 - -
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3.1 FUNDAMENTALS OF THREE PHASE SYSTEMS

Three-phase electrical power is generated by alternators in large power
plants. This three-phase power is utilized for powering the
network through the transmission and distribution systems.
Three-phase power supply is obtained by the formation of the
three coils 120° apart from each other and rotated in a uniform
magnetic field. These coils are arranged in star or delta fashion
(Refer. Sec. 3.2.1 and 3.2.2). In three-phase systems, Vy
voltage/current phasors are 120° apart from each other. Voltage
in each phase coil is represented as a phasor. For three-phase
coils’ phase is shown by a letter with arrow on it such as
V—R),Vy) & VT;, and its magnitude is denoted by
Vg, Vy, Vg respectively (Fig. 3.1).

Fig. 3.1: Representation
of a vector

3.1.1 Generation of the three-phase supply

In the single phase system, both line voltage and phase voltage have been introduced in Chapter 1. The
single-phase alternator is used to generate a single phase power supply which has only one rotor
windings. The number of rotor windings are increased and independent voltage waveforms are
produced according to the number of windings. When three windings (with dedicated colours red
(R), yellow (Y) and blue(B)) are present, three voltage waveforms are obtained. Each phase of the
three-phase supply is represented as phasor 71{, W and V;, These phasors are rotating with angular
frequency w in anti-clockwise direction with 120° angular displacement, based on the waveform
generated and is shown in Fig. 3.2. The three-phase waveforms are obtained and represented in
Fig.3.3. These phase voltages are presented by equations (3.1) to (3.3) as follows.

vr(t) =V, sinwt 3.D
vy (t) =V, sin(wt — 120°) (3.2)
vg(t) =V, sin(wt — 240°) (3.3)

For the balanced systems, the addition of all three voltages produces zero. The balanced systems are
discussed in the later part of this chapter.

N Bj S

Fig.3.2: Three windings (red, yellow and blue) are rotating between magnetic bars (N and S) with
angular velocity of ®.
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mee—

<
+120° |-

Fig.3.3: Three-phase waveforms

3.1.2 Phase Sequence

The phase sequence is the order in which each of the three phases reached either zero crossing or the
maximum value of the quantity. The standard phase sequence is RYB, it means that R reaches the
maximum value and then Y, finally B that is obtained only when phasors rotate in anticlockwise
direction. It is also denoted as a positive phase sequence. When phasors rotate in clockwise
direction, the obtained phase sequence is RBY that is known as negative phase sequence. The
phase sequence could be reversed by interchanging any two among the three phases.

Example 3.1: Determine the phase sequence of the given three-phase voltages vgy (t) = 310sin(wt +
309), vyy(t) = 310sin(wt — 90°) and vgy (t) = 310sin(wt — 210°).

Solutions: The voltages are represented in phasor form as follows. The phasor diagram is shown in
Fig.3.4.

Ve = 310230% Vyy = 3102 —90°; Vgy = 3102 — 210°

Fig.3.4: Phasor diagram of the three-phase voltages

From this, it is understood that the phase sequence is RYB.

3.2 TYPES OF THREE-PHASE CONNECTIONS

Three phase supply systems have two types of connections namely star connections (Y) and delta
connections(4). Sources of the supplies are mostly connected in star while the transformers and
the motor or any other loads may be connected either in star or delta.
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3.2.1 Star Connection

A star connected load is shown in Fig.3.5, each phase-load has two ends. One end of the load is connected
to one of the three-line conductors and the other end of the load is joined together with two loads
a point named as neutral point. The phase voltage (Vzy, Vyy Vpy) measured between any one of
line conductors (R, Y, B) to the neural point (N) and is shown in Fig.3.3 and hereafter these phase
voltages are denoted as Vg, Vy V. The line voltage (Vry, Vyp Vpr) measured between any of the
two-line conductors (R-Y, Y-B, B-R), which is shown in Fig.3.5. From the pictorial representation
of the star systems, it is understood that phase voltage and line voltage carry different values. The
instantaneous voltages are explained in the next paragraphs.

For a balanced system, the loads are equal Z, = Z, = Zy and the current in the neutral wire is zero. Since
the neutral current is zero, the neutral conductor is not needed and it is often evaded. The phase
voltages/currents and line voltages are equal in magnitude which is presented in equation (3.4) -
(3.6). The phasor addition of the line currents is zero which is presented as equation in (3.7).

gl = [Iy| = |Ig] (3.4)
[Vl = [Vy| = Vgl (3.5)
[Vryl = [Vygl = Vgl (3.6)
Ig+1,+13=0 (3.7)

R v

o

VRY i i

o

---------

o

y b

?VYB i

B v v

Fig.3.5: Star connected load with the information of the phase voltages and line voltages

The instantaneous value or time domain representation of the phase voltage is shown in equation (3.8) -
(3.10). The phasor diagram of the phase voltages is presented Fig.3.6 and also the phasor diagram
for obtaining the line voltages is shown in Fig.3.7. The phase voltage is represented in phasor
form as shown in equation (3.11). The line voltage (Vgy) is the instantaneous line voltage
(Wry (t), vyp (1), vgr(t)) of the three-phase star connected loads are calculated by the vector
subtraction of the phase voltage vg(t), vy (t)and vy (t)which is_stated in equations (3.12) to
(3.14). The line voltage is expressed in phasor form as shown in equation (3.15) using the equations
(3.12a) to (3.14a). For the balanced system, the line voltages are also 120° apart from each other.

vgr(t) = Vpsinwt (3.9
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vy (t) = Vppsin(wt — 120°) (3.9)

vg(t) = Vi, sin(wt — 240°) (3.10)

Vi = [V]20% Vy = [Vlz — 120 Vg = [V,]2 — 240° 3.11)
Vg

Vy

Fig.3.6: Phasor diagram of the phase voltage in Y connected 3® systems

I

.\YVYB
Fig.3.7: Phasor diagram of the line voltage in Y connected 3® systems
Vry () = vR(t) — vy (t) = Vysinwt — V,sin(wt — 120°) (3.12)

gy (t) =V, sinwt — V,,, [sinwt * cos120 — coswt * sin120]
=V, sinwt + V,,, sinwt * % + Vpcoswt * ?
= % Vin sinwt + V,,,coswt * ?
=3V, [ gsinwt + % coswt]

=\/3V},,[cos 30 sinwt + sin 30 coswt]



152 | Electric Circuits and Networks

=3V, [sin(wt + 30°)] (3.12a)
vyp(t) = vy (t) — vp(t) = Vysin(wt — 120°) — V,,sin(wt — 240°) (3.13)
vy (t) = V3V, [sin(wt — 90°)](3.13a)
vgr(t) = vg(t) — vg(t) =V, sin(wt — 240) — V,, sinwt (3.14)
ver(t) = V3V, [sin(wt — 210°)] (3.14a)
Viay = V3|V 1£30% Vyg = V3|V, |2 —90% Vg =+/3|V,|z—210° (3.15)

By Comparing the phase voltage and line voltage of the star connected systems with equations (3.11) and
(3.15), the magnitude of the line voltages and phase voltages could be written as in equation (3.16)
and (3.17) respectively. It is understood that the magnitude of the line voltage is /3 times of the
magnitude of the phase voltage. Hence it could be simply represented by the equation (3.18).

[Vryl = [Vygl = [Vgrl| = V3V, | = VL (3.16)
|VR| = |VY| = |VB| = |Vm| = |VP| (3.17)
VLI = V3V | = V3|Vpl (3.18)

The current flows in any of the line conductors (R, Y, B) is known as line current (I;,4, I}, I;3), which is
denoted as (I;), for balanced systems. The current flowing in the phase circuit is known as phase
current which is represented as Iy, Iyy, [gyand these are represented as (Ip) for a balanced system.
In the star connection, theline current is equal to the phase current which is presented in equation
(3.19). The instantaneous value or time domain representation of the phase current is shown in
equation (3.20)- (3.22).

=l

Be >
Ig=I13

Fig.3.8 Star connected load with the information of the phase currents and line currents
Ix(t) = I, sinwt (3.20)
Iy (t) = L,sin(wt — 120°) (3.21)
Ig(t) = I,, sin(wt — 240°) (3.22)
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Example 3.2: A balanced three-phase star connected load is supplied from 310V, 50Hz source. Find the
line voltage of the load, the line current and phase current when the load per phase is resistance of
10Q and inductance of 20mH. Find the real power, reactive power, apparent power and power
factor of the load.

Solutions: The supply voltage is 310V, which is the line voltage. Let us assume the phase sequence is
RYB. Hence the line voltage of the star connected load is mentioned below and its phasor form is
represented in Fig.3.9.

Vey = 31020°V; Vyp = 3102 — 120°V; Vg = 3102 — 2400V

The phase voltage of the load is Vzy, Vyn, Vgn. Phase voltage =Line voltage/v/3
Ven = 310 _ 178.9V;
RN \/§ . §

The magnitude of all three phases is equal and it is 178.9V. The R phase voltage is lagging behind the
line voltage Vgy by 30%or the Y connected load. Hence the phase voltages are found as follows
and the relation between the phase voltage and line voltage phasor are shown in Fig.3.10.

The load per phase is resistance of 10 and inductance of 20mH.

R/phase=10Q; L/phase =20mH

Inductive reactance —t—=2nfL=2n (50) (20%107%) =(2m) Q

phase_

Impedance/phase (Z/®) = (10 + j2m)Q= 11.81,32.14Q

Phase Voltage
Phase current = g

Impedance per phase

o Ve Ve o Ven

R=z/0" Y T z/0" BT 70
_ Vey _178.92-130

e 7/ (10 +j2m)

17892 -30

T 11.81232.14

=15.142 — 62.14°A

Since the load is balanced, the phase current in other phases is easily written as
Iy = 15.142 — 182.14°A
Iz = 15.142 — 302.14°A

Whereas in Y connected loads, the line current is equal to the phase current. The phasor diagram of the
phase voltage and phase current are represented in Fig.3.11. The angle (0) between these

parameters is 32.14° (lagging). Hence the power factor of the load is [cos(0)], which is equal to
0.8467(lagging).
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Fig.3.10: Relation between three-phase line voltages and phase voltages

Vin

Fig. 3.11: Relation between the phase voltages and phase currents
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Power:
Active power of the load P3,, = V3V, I cosg =+/3 * 310 = 15.14  cos(32.14) =6883.41W
Reactive power of the load Q3, = V3V, 1, sing =+/3 * 310 * 15.14 * sin(32.14)=4324.65VAR

Apparent power of the load S3, = [P, + Q3,=8129.2VA.

Example 3.3: A balanced three-phase star connected load of (10+j8) Q/phase is supplied from a balanced
three-phase supply of 4002 — 20°V, 50Hz. Find the line current, the real power, reactive power,
apparent power and power factor the load.

Solutions: The supply voltage is 4002 — 20°V, which is the line voltage. Let us assume the phase
sequence is RYB. Hence the line voltage of the star connected load is mentioned below and its
phasor form is represented in Fig.3.12.

Vey = 4002 — 20°V; Vyp = 4004 — 140°V; Vgz = 4002 — 260°V
The phase voltage of the load is Vzy, Vyn, Vgn. Phase voltage =Line voltage/v/3
400

Vern =f

The magnitude of all three phase voltages is equal and it is 231V. The R phase voltage is lagging behind
the line voltage Vgyby 30° according to the star (Y) connected load. Hence the phase voltages are

found as follows and the relation between the phase voltage and line voltage phasor form are shown
in Fig.3.13.

The load per phase (Z/¢)=(10+8) Q

= 231V;

Phase Voltage

Phase current =
Impedance per phase

Lo Ve oo Ve o Vew
R=z/0" Y T z/0" BT 70
VRN 2314_50

=76~ 0578
_2312-50
"~ 12.81438.65

=18.032 — 88.65°A

Since the load is balanced, the phase current in other phases is easily written as
I, = 18.032 — 208.65°A
Iy = 18.032 — 328.65°A

Whereas in Y connected loads, the line current is equal to the phase current. The phasor diagram of the
phase voltage and phase current is represented in Fig.3.13. The angle (0) between these parameters
is 38.65° (lagging). Hence the power factor of the load is [cos(0)] lagging, which is equal to 0.781.
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Fig. 3.13: Relation between the phasor diagram of the three-phase line voltages, phase voltages and
phase currents

Power:
Active power of the load P3,, = V3V, I cosgp =+/3 * 400  18.03 * cos(38.65) =9755.59W

Reactive power of the load Q3, = V3V, 1, sing = /3 * 400 * 18.03 * sin(38.65)=7801.74VAR

Apparent power of the load S5, = [P, + Q3,=12491.54VA.
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Example 3.4: A balanced Y connected three-phase load is supplied from a 3 phase 3 wire 400V, 50Hz
system which takes a line current of 10A at 66.86lagging with respect to the line voltage. Calculate
(a) load components and its parameters (b) power factor of the load and (c) the active power
consumed by the load. Draw the phasor diagram.

Solutions: The supply voltage is 40020°V, which is the line voltage. Let us assume the phase sequence
is RYB.

Vey = 40020°V; Vyp = 4004 — 120°V; Vgr = 4002 — 240°V
The phase voltage of the load is Vzy, Vyn, Vgn. Phase voltage =Line voltage/v/3
400

Vay = —
RN \/§
The magnitude of all three phases is equal and it is 231V. The R phase voltage is lagged by 30° with the

line voltage Vgy according to the Y connected load. Hence the phase voltages are found as follows
and the relation between the phase voltage and line voltage phasor form are shown in Fig.3.14.

Line current (I;) =102 — 66.86°A (- symbol indicates the lagging)
For Y connected load, Line current = Phase current

= 231V;

Phase Voltage

Phase current =
Impedance per phase

Lo Ve oo Ve o Vew

R=z/0" Y T z/0" BT 70
Vay 231

/)P =2 ="

/ I, 10

= 23.1Q0

From the phasor diagram presented in Fig.3.14, the current lags the line voltage by 66.86° and lags the
phase voltage by 36.86°. Hence the power factor of the load is lagging one and the load will be
the inductive load. Hence the impedance angle is 36.86°.

7/® = 23.1236.86°Q
= (18.48 +j13.85)Q = R + jX,

Hence the resistance per phase is 18.48Q and inductive reactance is 13.85Q; Therefore, the inductance
per phase is calculated as follows.

X, = 2nfL
L = 44.08mH
Inductance per phase=44.08mH
The power factor of the load is cos (36.86) =0.8 (lagging).

Active power consumed by the load P3, = V3V,1, cosp =+/3 %400 % 10 = 0.8 = 5542.56W
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Fig.3.14: Phasor diagram of Example 3.4
3.2.2 Delta Connection

A three-phase delta connected system is shown in Fig.3.15, each single-phase load has two ends. One
end of the load is connected to another load’s one end. Similarly, all three loads are connected
which forms the closed loop and looks like a delta symbol. Hence it is named as delta connection.
In delta connection, the neutral of the one phase is joined with another phase of the three phase
system which is indicated clearly in Fig.3.15. In delta connection, there is no physical neutral point.
Hence, the line voltage (Vry, Vyp Vpr) measured between any of the two-line conductors (R-Y, Y-
B, B-R), which is shown in Fig.3.16 that is equal to the phase voltage. From the pictorial
representation, it is understood that the line voltage is equal to the phase voltage of the delta
connected systems and presented in equations (3.23).

The current flows in any of the line conductors (R, Y, B) is known as line current(Irine, Iyiine Ipiine)-
The current flows through the phase coil are known as phase current and represented as
(Igp, Iyp,Isp) which are presented in Fig. 3.17. In order to obtain the relation between the line
currents and phase currents, apply the KCL at the nodes of the delta connected loads. The KCL is
applied at node R, the incoming currents is equal to the outgoing currents which is stated in
equation (3.24). Similarly, KCL is applied to other nodes Y and B, the corresponding equations
(3.25) and (3.26) are obtained respectively. The line currents are obtained by the phasor of the two
phase currents which is shown in equation (3.24a) to (3.26a) and the corresponding phasor diagram
is presented in Fig. 3.18.

IRline + IBp = IRp (324)
IYline + IRp = IYp (325)
IBline + IYp = IBp (326)
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IRline = IRp - IBp (324&)
Iyline = IYp - IRp (3218.)
IBline = IBp - IYp (322&)
N,R

— AN

R N

_/\/\/\/—

Y N

— AN NS——

B N

N, Y N, B

Fig. 3.15: A connection transition of the three, single phase loads which is transformed into the three-
phase delta connected systems

® R
R4 4 b A
: | | |
! | ' |
| Vry ! Vrn I ! Zry Zgr
i I I | Vin Load
: | : VBR |
I | | |
v \ i I
o . B
v oA, 4 Y Zyn
o \ / \4 \4
B

Fig. 3.16: Delta connected load with the information of the phase voltages and line voltages

The instantaneous value or time domain representation of the phase current is shown in equation (3.27)-
(3.29). The phasor diagram and phasor form of these currents are represented in Fig. 3.18, and in
equation (3.30) and also the phasor diagram for obtaining the line current is shown in Fig.3.19.
The magnitude of the phase current is |Ip| which is equal to I,,and explained in equation (3.20a).

ipp(t) = Lysinwt (3.27)
iyp(t) = Lysin(wt — 120°) (3.28)
ipp(t) = Iy, sin(wt — 240°) (3.29)
Irp = I;m20; lyp = [t — 120°;; lgp = Lt — 240° (3.30)

|Irp| = [lyp| = [Tgp| = 1Ip| = I (3.30a)
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Re@®
Ye >
IY]ine
Be >

Igiine

Fig. 3.17: Delta connected load with the information of the phase currents and line currents

I,

Fig. 3.19: Phasor diagram of the line current inA connected 3® systems
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The instantaneous line current of the three-phase delta connected loads (igine (), iyiine (t), ipiine (t)) are
calculated by the phasor subtraction of the phase current ig,(t),iy,(t)and ig,(t)using the
equations (3.27) to (3.29) which are represented in equations (3.31) to (3.33). For the balanced
system, the line currents are also 120° apart. The phasor form of the line current is presented in

equation (3.34) to (3.36). The magnitude of the line current is /3 times of the maximum value of
the phase current (I,,;). By comparing the equations (3.34-3.36) and (3.30a), it is understood that

the magnitude of the line current is /3 times of the phase current and presented in equation (3.37).
IRtine (t) = igp(t) — ipp(t) = Iysinwt — I,sin(wt — 240) (3.31)

irtine (t) = Lysinwt — L, sinwt cos240 + I,,, cos wt sin240

= I,sinwt — L,sinwt * (— %) + I, cos wt * (— g)

= %Imsina)t - ?Im cos wt

=\/§Im[§sina)t - %cosa)t] = /31, [sinwt cos30° — coswt sin30°]

=\/31I,,,[sin(wt — 30°)]

iviine (t) = iyp(t) — igp(t) = Ipsin(wt — 120°) — Iy sin(wt) (3.32)
iyline (t) = V3Ip[sin(wt — 150°)]

iptine (t) = igp(t) — iyp(t) = Iysin(wt — 240) — I,,sin(wt — 120) (3.33)
ig1ine (t) = V3L [sin(wt — 270%)]

Iriine = V3|12 — 30° (3.34)
Iyiine = V3|1l — 150° (3.35)
Igtine = V3lIyl2 —270° (3.36)
[L1ine| = V315 (3.37)

Example 3.5: A three-phase 3 wire 415V, 50Hz system supplies a delta connected load which consists
of resistance 20Q2 and inductance 10mH in series. Determine the phase current, line current and
also draw the phasor diagram.

Solutions: The supply voltage is 41520°V and the system is described by Fig. 3.20. Let us assume the
phase sequence is RYB. Hence the line voltage of the delta connected load is mentioned below
and its phasor diagram is shown in Fig.3.21.

VRY = 4’15400‘/, VYB = 4’154_1200‘/, VBR = 4’154_24'00‘/
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Vey=415v |
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ve .
vy}i |

Be \A J

Fig. 3.20: Delta connected load (Example 3.5)

Fig. 3.21: The phasor diagram of the three-phase line voltages of Example 3.5

The inductive load per phase (%)=10mH;

The inductive reactance per phase (X, /@) = (2nfL)Q=(2m = 50 * 10 * 1073) = 3.14Q
The load per phase (Z/¢)=(20+j3.14) Q

In delta connected load, the line voltage is equal to the phase voltage. Hence,

Phase Voltage
Phase current =

Impedance per phase

Ve Ve _Vm

Re =z/® P T 7/ PP T 70
_ Vay 41520

lrp = Z/® (20 +j3.14)

41520

"~ 20.24£8.92

= 20.52 —8.92°4

Since the load is balanced, the phase current in other phases is easily written as
Iy, = 20.52 — 128.92°A
Ig, = 20.52 — 248.92°A
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Whereas in A connected loads, the line current magnitude is equal to /3 times of the phase current. The
line current is 30° lagging with the phase current which is represented in Fig.3.22. The angle (®)
between the line voltage and line current is 8.92°. Hence the power factor of the load is (cos(®)),
which is equal to 0.987 (lagging).

15 fine

4

!
VaRr IB_phasell-'

o 5 Vey
SN
- 3 ‘g/xl__/}\) 30° - IPL_phase
i AT A "
- y
» { / l i ~
Iy fine IY.phace / | i \*

" I

X-‘L—B | R line

Y

Fig. 3.22: The phasor diagram of the three-phase line voltages, phase current and line current of the
delta connected load of Example 3.5

Example 3.6: A balanced three-phase load of 8kW at a power factor of 0.8 is supplied from 3 phase 3
wire 415V, 50Hz system. Find the phase current, line current when the load is (a) Y connected (b)
A connected.

Solutions:
Real power (Ps¢)=V3V, I, cos ¢=v3(415)1,(0.8)
(P30)=8000=v3(415)1,(0.8)

8000

T V3(415)(08)

(a) Y connected load:

I 13.914

Line current = Phase current
I, = 13914
(b) A connected load:
Line current = /3 * Phase current
I, = V3% I,=1391A
Ipy, = I = 8.034
V3
3.3 BALANCED AND UNBALANCED LOAD

In general, unbalanced system occurs due to unbalanced voltage sources or unbalanced loads. In this
section, the assumption is made that the unbalanced system occurs due to the unbalanced loads only.
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The balanced load indicates that the load on each phase of the three-phase load has an equal value. The
three-phase balanced load could be connected in the form of Y or A, the calculation of the voltage and
current are similar to the Y connected or A connected systems discussed in the earlier sections.

The unbalanced load indicates that the unequal value of the load is connected in each phase of the three-
phase loads. When the unbalanced load is powered by the three-phase balanced supply, the behaviour
is different for Y and A connected loads.

3.3.1 Star connected unbalanced load

The star or Y connected unbalanced load (shown in Fig.3.23) is connected to the three phase balanced
supply systems (not shown in Fig.3.23). The loads Rgr, Ry and Rg have unequal values; hence it is
named as unbalanced load. The line currents are calculated according to Ohm’s law and presented in
equation (3.38). These values are not equal, since the load values are different. Hence, in order to find
the neutral current, apply KCL at the neutral junction and the corresponding equation is in equation
(3.39) and find the neutral current in equation (3.40). The neutral current is not zero as in balanced three
phase systems. The neutral wire should have the low impedance value in order to carry the neutral
current and this value should be equal to or less than the line current of the system. The neutral of the
load should be connected to the neutral of the supply, in order to maintain the same potential. Three-
phase connected load shown in Fig.3.23 is a three-phase four wire model. Whereas the three-phase
three wire model has the unbalanced load, the neutral point is known as the floating neural point which
is rarely found in practice. The analysis of such a system is different from the three-phase 4 wire load
model.

Vv, oV, Ven
IR_ RR’ IY_ RY’ IB_ Rg (338)
In=-(r + Iy + Ip) (3.40)
R e >
In A
|
| Vin Ri
|
v
Ne > N Load
A A <
| | B
1 VBN |VYN Ry
Ye ! > v
1 I,
|
Be—Y >
Is

Fig. 3.23: Star or Y connected unbalanced three-phase load
3.3.2 Delta Connected Unbalanced Load

The unbalanced A connected load does not present the new problems like the unbalanced Y connected
loads which is presented in Fig. 3.24. The loads are not equal (Zgy # Zyg # Zgg)- The current flowing
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in the load depends on the load which are different for each phase. The voltages across each phase or
load remains the same but having the phase angle difference of 120° like the balanced system. Hence
the load current of each phase (phase current) is calculated according to the equation (3.41). The line
current of the unbalanced A connected load is found using equations (3.42) to (3.44).

Re®

A

Ye

v

Be
Igiine

Fig. 3.24: Delta or A connected unbalanced three-phase load

Inp = 73l =52 I, = 3% (3:41)
Ipyine = Irp — 1B, (3.42)
Iy,.. = ly, — Ip, (3.43)
Isyme = Isp = I, (3.44)

3.4 POWER IN THREE-PHASE SYSTEMS (BALANACED SYSTEM)

A power is consumed by three-phase load is the sum of the power consumed by each phase. For the
balanced system, the three-phase real power (P3,,) is equal to three times of the single-phase real
power (Py,).
=3 X Vpp X Ly X cos(H)

Where Vyj,, I, are the single-phase voltage and phase current respectively. 6 is the angle between the
single-phase voltage and phase current.

For star connected systems, V; = \/§Vph ; I, = Ipp according to equation (3.15) and (3.19). Hence, the
three-phase power could be calculated as,

Py, =3 X Vpp X I, X cos(6)
Vi
=3 X — X [, X cos (0)

V3
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P3, = V3V, 1, cos (9) (3.46)
For delta connected systems, V;, = V,p,; I, = \/§Iph according to equation (3.23) and (3.37). Hence, the

three-phase power could be calculated as,

Py, =3 X Vpp X L, X cos(6)

=3 XXV, X % X cos (0)

P3, =3V, 1, cos () (3.47)

Hence, the reactive power for the three-phase systems could be written as shown in equation (3.48) for
both star and delta connection.

Q3 = V3V,1, sin (6) (3.48)
The total apparent power of three-phase system (Ss,,) is calculated using the equation (3.49) or (3.50).
S3p = V3V, (3.49)

Sap = |PZ,+02, (3.50)

3.5 MEASUREMENT OF POWER IN THREE-PHASE SYSTEMS

A wattmeter is the device which is used for measuring the average or real power in AC circuits. The
measurement of single-phase power is discussed in Chapter 1. Three-phase power measurement is
presented in this section. The active power (real power) measurement of three-phase system is
performed with three methods namely,

e Three wattmeter method
e Two wattmeter method
e One wattmeter method

Both three wattmeter and two wattmeter methods are used for balanced as well as for unbalanced systems.
One wattmeter method is used for the balanced systems only.

3.5.1 Three Wattmeter Method

In order to measure the three-phase real power, three wattmeters are used and those have been connected
as per the circuit shown in Fig.3.25. The load shown in Fig.3.25 is the star connected load. But this
circuit is applicable to the delta or A connected load also. When the load is balanced, the real power
of each phase remains the same which could be easily measured with single wattmeter from any
one of the phases. Pi, P,and P3; are the power measured in phase R, phase Y and Phase B
respectively. Hence the three-phase real power for the balanced load is the sum of powers in each
phase, P3o = Pi+P>+P;. The measured power from each wattmeter is namely Wi, Woand W3 from
the three-wattmeter method for the three-phase balanced load. Hence the three-phase real power
for the balanced load is the sum of wattmeter values W+W,+ W3 which is equivalent to P3o. The
three-phase power could be written as per the circuit in equation (3.51).

P3, = real part of (egig + eyly + egig) = V3V, 1, cos (@) (3.51)
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—> R

Source
(Either Y or A)

W3

Fig. 3.25: Three wattmeter method for measuring three-phase power

3.5.2 Two Wattmeter Method

In this method, the current coils of the two wattmeters are connected to any two-phase lines among the
three phase lines and the potential coil is connected between any two of the phases. As shown in
Fig. 3.26, the current coil of the first and second wattmeter is connected to R and B phase
respectively. The potential coil of the first and second wattmeter is connected between R and Y, B
and Y phase respectively.

éiR
(T

Wl ]_/\ AN ——

PC R

Source Zry Zgr
(Either Yor A ) Load
0 Y ’
7 B
cC L i e
(00 —>
w2 L/\/W_/
P

(a) Y connected load
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—> i
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Source Zry Zir
(Either Yor A) Load
0 Y/ g
> B
Zyg
| =
(J)L_\ —>
w2Lapp—r

(b) A connected load
Fig. 3.26: Two wattmeter method for measuring three-phase power

The potential coil of the first and second wattmeter is connected between R and Y, B and Y phase
respectively.

The current coils of the two phases are connected in series with the phase and the potential coils are
connected between two phases as presented in Fig. 3.26.

Here, a star-connected load is considered that is explained for the two-wattmeter method. The same
concept could be applied to A-connected loads. Since, a A-connected load could be replaced by an
equivalent Y-connected load. The proof is true whether the load is balanced or unbalanced. The
two-wattmeter method measures the average power consumed by the three-phase loads, due to the
inertia of the moving system. The currents through and potential difference across each wattmeter
measures the current flowing through the particular phase of the line current and the line voltage
of the potential coil connected between phases respectively. Based on the above description, the
wattmeter readings are indicated below.

Instantaneous current in wattmeter (W) = iy
Instantaneous potential drop in wattmeter (W1) = ezy =€r — ey
Instantaneous current in wattmeter (W») = ip
Instantaneous potential drop in wattmeter (W) = egy = ep — ey
Hence, instantaneous power measured by wattmeter (W) = ig*(eg — ey)
Similarly, instantaneous power measured by wattmeter (W») = iz*(eg — ey)
WitWy=ig*(er —ey) +ip*(ep —ey)
= igegr —igey *+igep —igey
= iger + igeg — igey —igeéy
= igegr + igeg —ey(ig + ip)

For the balanced system, iy + iy + iz = 0;
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Wi+W,=igeg + igeg — ey(—iy) = igeg + iyey + igeg= 3 phase power

Let us assume that the phase sequence is RYB and load impedance isZp = Zg£6. The phase angle of
that phase voltage iszero and hence, the current in that phase is lagging by an angle 6 and the
concerned phasor diagram is presented in Fig. 3.27 with reference to Fig.3.6. The wattmeter (W)
reads the real power (P;) stated in equation (3.52).

Fig. 3.27: Phasor diagram of the line voltage, phase voltage and current in the star connected
load for two-wattmeter method

P1 = Real [VRyl;;] = VRYIR COS(G + 30) = VLIL COS(G + 30) (352)
Similarly, the second wattmeter (W) reads the real power (P2) which could be represented in equation
(3.53).

P2 = Real [VBRIE] = VBRIB COS(30 - 9) = VBRIB COS(G - 30) = VLIL COS(G - 30) (353)

By the addition of these two wattmeter readings, the equation (3.54) is obtained. After the simplification
(using cos(A+B) and cos(A-B) trigonometry formulae), the obtained value is equal to the three-
phase average power of the system.

P, + P, = V.1, cos(8 + 30°) + VI, cos( — 30°) = +/3V, I, cos8 (3.54)
Using the measured values, perform P;-P,. Three-phase reactive power Q3o is obtained using equation
(3.55). Whereas the total apparent power for the three-phase systems could be obtained using
equation (3.56). The tangent angle and power factor is also calculated using (3.54) and (3.55) and

those are stated in equations (3.57) and (3.58) respectively. The two-wattmeter method is capable
to provide three-phase power and is also able to obtain the power factor.

P1 - P2 = VLIL COS(G + 300) - VLIL COS(G - 300) = _VLIL sin @

OR
PZ_Pl =VLILSin9
Q3(,0 = \/§VLIL Sin9 = \/§(P2 - Pl) (355)

Sap= |PZ,+02, (3.56)

tang = Lo = V=P (3.57)

P3¢ (P1+P)
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M)] (3.58)

cosf = cos[tan‘l(
(P1+P;)

Using (3.58), the types of loads connected system could be identified as follows.

When P; = P,, it is resistive load. Since, the power factor becomes unity.
When P, > P, it is inductive load. Since, the power factor becomes positive.
When P, < P,, it is capacitive load. Since, the power factor becomes negative.

3.5.3 One Wattmeter Method

One wattmeter method is used only for the balanced load systems and the connection diagram is shown

in Fig. 3.28. The current coil is connected to one of the phase lines. As per the connection diagram,
current in R phase iy is measured. Whereas one end of the potential coil is connected to the R
phase and the other end of the potential coil is connected to node 1. Node 1 is connected to either
node 2 or node 3. When the node 1 is connected to node 2 and node 3, the corresponding measured
potential is egy and egp respectively. Hence two wattmeter readings are obtained, which could be
denoted as W and W». The equation (3.59) is similar to the equations used in the two-wattmeter
method; hence the measured power is the three-phase real power or active power. This is proved
by a phasor diagram which is shown in Fig. 3.29. The power measured by the wattmeter when
connected to node 2 and node 3 is active power and denoted as Py and P,which is represented in
equation (3.60) and (3.61) respectively.

WitWa=ig*(egy) +ir*(erp)

Wit+Wa=ig*(egr — ey) tig*(er — ep) (3.59)
= igegp — igey +igeg — igep)

= 2igeg — ir(ey + ep)

[For balanced system, ep + ey + e = 0]

= 2iger + igeg

= 3igep = 3 * single phase power

—> i
wi .
Source 1
(Either Y or A )
2 I *3

Fig. 3.28: One wattmeter method for measuring three-phase power
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Fig. 3.29: Phasor diagram of the line voltage, phase voltage and current in the star connected load for
one wattmeter method
P1 = Real [VRyl;;] = VRYIR COS(G + 300) = VLIL COS(G + 300) (360)
P2 = Real [VRBI;;] = VRBIR COS(30 - 9) = VRBIR COS(G - 300) = VLIL COS(G - 300) (361)
By the addition of these powers, the equation (3.62) is obtained. After the simplification (using cos(A+B)
and cos(A-B) trigonometry formulae), the obtained value is equal to the three-phase average power of
the system.
P, + P, = V.1, cos(8 + 30°) + V.1, cos( — 30°) = 3V, I, cos8 (3.62)
Example 3.7: A balanced Y connected three-phase load of 20£30Q per phase is supplied from a 3 phase
3 wire 400V, 50Hz system. Calculate (a) the phase voltage (b) the line current. Draw the phasor

diagram. Find the wattmeter readings if two wattmeters are used for the power measurement. Also
calculate the reactive power and the power factor using the wattmeter readings.

Solutions: The supply voltage is 40020°V. Let us assume the phase sequence is RYB. Hence the line
voltage of the delta connected load is mentioned below and its phasor form is represented in
Fig.3.30.

Viay = 40020°V; Vyp = 400£—120°V; Vg = 400£—240°V
The load per phase (Z/¢)=20430Q

In star connected load, the line voltage is equal to v/3 times of the phase voltage by magnitude. Hence,

line Voltage

Phase voltage = 7 =231V
The angle between the line voltage and phase voltage is 30°. For Example, the line voltage leads the
phase voltage by 30°.

Phase Voltage

Phase current =
Impedance per phase
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_ Ven _ W _ Vbn
IRP_Z/_CD; YP—Z/_CD; BP—Z/_CD
Ven 2312 -30°
P~ 7/® 202300
=11.552 — 60°A
Since the load is balanced, the phase current in other phases is easily written as
Iy, = 11.552 — 180°A
Ig, = 20.5£ — 300°A

Iy

VN

Fig. 3.30: Phasor diagram of Example 3.7

The angle (@) between the phase voltage and phase current is 30° (lagging). Hence the power factor of
the load is (cos(®)), which is equal to 0.866. Wi and W, are the wattmeter readings and they
represented as Py and P; respectively.

Real power P = v/3V, I, cos ¢ = /3(400)(11.55) cos(30°) = 6930W

Real power P = P; + P, = 6930W

As we know, tan g = AEIG )]
Py+P,
_ _ tan @x(P1+Py)
P, = Py = SRR 03 10w

Hence the wattmeter readings are P;=2310W; P,=4620W.
Reactive power Q = v/3V,I; sin ¢ = v3(400)(11.55) sin(30°) = 4001.04VAR

Power factor = cos@ = cos[tan™! (\/g(Pz—PO)]
(P1+Py)
V3x2310

6930

cosf = cos[tan‘l( ) = ¢0s(29.99%) = 0.866(lagging)
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Example 3.8: A balanced A connected three-phase load of 10£60Qper phase is supplied from a 3 phase
3 wire 400V, 50Hz system. Calculate (a) the phase voltage (b) the line current. Draw the phasor
diagram.

Find the wattmeter readings if the two wattmeter is used for the power measurement. Also calculate
reactive power and the power factor using the wattmeter readings.

Solutions: The supply voltage is 40020°V. Let us assume the phase sequence is RYB. Hence the line

voltage of the delta connected load is mentioned below and its phasor form is represented in
Fig.3.31.

Vey = 40020°V; Vyp = 4002—120°V; Vg = 4002—2400V
The load per phase (Z /@)= 10260°Q

In delta connected load, the line current is equal to v/3 times of the phase current by magnitude. The
phase voltage is equal to the line voltage.

Ven = 40020°V; Vyy = 400£—120°V; Vgy = 4002—240°V
Phase Voltage

Phase current =
Impedance per phase

oo Ve Vo
Z/® VAL PZ/D
/ _ Ve _ 4002£0°
Rehase — 7/~ 10,600
=404 — 60°A
Since the load is balanced, the phase current in other phases is easily written as
Iy, . =402—180°A
Ig,, . =404 —300°A
VBR IB,phase

I .
'/v B, line

s
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Fig. 3.31: Phasor diagram of Example 3.8

In delta connected load, the line current lags 300 with the phase current. Therefore, the line currents are
mentioned as follows.

Ig yine = 40V32 — 90°A; Iy i = 40V32—2104; Ip 1ine = 40v/32—330°A

The angle (®) between the phase voltage and phase current is 60°. Hence the power factor of the load is
(cos(®)), which is equal to 0.5 (lagging).

Real power P = V3V, cos ¢ = V3(400)(40v3) cos(60) = 24000/ =24kW
Real power P = W, + W, = 24kW

As we know, tan @ = V3(Wp-w1)
W, +W,
_ tang+(Wi+Wp)
Wy = Wy = = 2224000

Hence the wattmeter readings are W;=0W; W,=24000W.
Reactive power Q = V3V, I, sin ¢ = v/3(400)(40v3)sin(60) = 41569.21VAr

Example 3.9: A phase voltage and current of the balanced Y connected three-phase load are 230V, 20A
and the power factor is 0.8(lag). If the power of the load is measured by two wattmeters, find the
wattmeter readings.

Solutions: The phase voltage (V) is 230V and the phase current(I,,) is 20A. For the Y connected load,

I, = Ip,means that the line current is equal to the phase current. V;, = v/3Vpy,, The line voltage is
+/3 times of the phase voltage.

V,, = V3Vp,=398.37V; Power factor (cos ¢)=0.8; ¢ = 36.86°
Real power P = v/3V, 1, cos ¢ = /3(398.37)(20)(0.8) = 11039.95W
Real power P = W; + W, = 11039.95W

As we know, tan @ = V3(Wp-w1)
Wi+ W,
_ tange W)
W, = Wy = S EEm e T8 TIW

Hence the wattmeter readings are W;=3130.62W; W,=7909.33W.

Example 3.10: A phase voltage and current of the balanced A connected three-phase load is 230V, 20A
and the power factor is 0.8(lag). If the power is measured by two wattmeters, find the wattmeter
readings.

Solutions: The phase voltage (V,,,) is 230V and the phase current (I,,) is 20A. For the A connected

load, I, = \/3Ip,means that the line current is equal to v/3 times of the phase current. V, =
Vpn, The line voltage is equal to the phase voltage.

Vy, = Vep; I, = V31, = 20+/34; Power factor (cos ¢)=0.8; ¢ = 36.86°
Real power P = v/3V, I, cos ¢ = v3(230)(20v3)(0.8) = 11040W
Real power P = W; + W, = 11040W
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As we know, tan ¢ = NEIU )
Wy W,
_ anexWi+W,)
W, = Wy = S EEm BT T8 TIW

Hence the wattmeter readings are W;=3130.62W; W,=7909.33W.

Example 3.11: The power consumed by the load is measured by two wattmeter methods and its readings
are 4.5kW and 10kW and the line voltage of the system is 410V. Find (a) the power factor and (b)
the line current.

Solutions: The supply voltage is 41020°V and the wattmeter readings are W;=4.5kW; W,=10kW.

tan g = W2 — W)
W, + W,

tang = V3(5.5k)
14.5k

¢@ = 33.26; Power factor, cos ¢ = 0.836
Real power P = W, + W, =3V, I}, cos ¢
14.5k =/3(410)(1,)(0.836)
[, = 24.42A
Hence line current value is 24.42A.

Example 3.12: A balanced star connected load, each phase having a resistance of 10 Q and inductive
reactance of 30 Q is connected to 400V, S0Hz supply. The phase sequence is red, yellow and blue.
Wattmeters connected to read total power have their current coils in the red and blue lines
respectively. Calculate the reading on each wattmeter and draw a phasor diagram in explanation.

Solutions: The supply voltage is 400£0°V, 50Hz and the phase sequence is RYB. Hence the line voltage
of the star connected load is mentioned below and its phasor form is represented in Fig.3.32.

Viay = 40020°V; Vyp = 400£—120°V; Vg = 400£—240°V
Zyp, per phase = (10 + j30)Q = 31.62£71.56()

In star connected load, the line voltage is equal to /3 times of the phase voltage by magnitude. The phase
current is equal to the line current.

Phase Voltage

Phase current =
Impedance per phase

Ven _ Vyw _ Ven
=760 =760 =70
VRN 2314 - 30

Irenase =70 = 316227156
= 7312 — 101.56°A
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Since the load is balanced, the phase current in other phases is easily written as
=7.312£—221.56°A

= 7312 —341.56°A

IYPhase

IBPhase

Fig. 3.32: Phasor diagram of Example 3.12
Ipiine = 7.314 — 101.56°A; Iy jine = 7.3124—221.56°4; Iy jine = 7.312—341.56°A

The angle (®) between the phase voltage and phase current is 71.56° (lagging). Hence the power factor
of the load is (cos(®)), which is equal to 0.316.

Real power P = v/3V, I, cos ¢ = /3(400)(7.31) cos(71.56) = 1601.96W
Real power P = W; + W, = 1601.96W

As we know, tan ¢ = NEIU )
Wy W,
_ W, = PnexWitW,)
W, = Wy = S 2o e0773.86W

Hence the wattmeter readings are W;=-585.95W; W,=2187.91W.
3.6 TYPES OF CONNECTIONS IN THREE-PHASE SYSTEMS

The three-phase power supply is generated from the three coils which is mentioned at the beginning of
this chapter. The generated power is utilized by the three-phase loads. The different connections
could be achieved between three-phase source and load as follows.

e star (Y) —star (Y)
o star (Y) - delta(A)
e delta (A)- star (Y)
e delta (A)- delta (A)

The pictorial representation of different connections are depicted in Fig.3.33 to Fig.3.36.
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¥,£120+6 !{‘,4—1204—9
VBN

A
|
|
|
|
|
|

\

Fig. 3.33: Star-Star connection of the three-phase system

r > R
Source
N
Load
¥,£120+0 V,£-120+6
5 > Z Zyp B

>
Fig. 3.34: Star-Delta connection of the three-phase system

\

Iy > R
Zr
~) 1,20 ~) V£ -120+0
Load
Source
N
S
V£ 120 +6
y
Y B
b |-

-

Fig. 3.35: Delta-Star connection of the three-phase system
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T —>— R
~) 1,26 ~) V£-120+0
Source
@ Load
¥,£120+6
y
— Zyy B
b |-
Fig. 3.36: Delta-Delta connection of the three-phase system
UNIT SUMMARY

1. The phase sequence is the order in which the phase voltages of a three-phase supply reach the
maximum value or peak value with respect to time. There are two types of phase sequence
namely positive and negative phase sequences. The negative phase sequence is obtained by
interchanging any two phases.

2. The line current is the current flowing from the generator to the load in each transmission line
in a three-phase system. The line voltage is the voltage between each pair of lines, excluding the
neutral line if it exists. The phase current is the current flowing through each phase in a three-
phase load. The phase voltage is the voltage across each phase.

3. The three-phase system is connected either in Y or A. The total instantaneous power in a
balanced three-phase system is constant and equal to the average power.

4. The total real power is measured in three-phase systems using either the three-wattmeter method
or the two-wattmeter method.

5. The real power absorbed by a balanced three-phase Y connected or A connected load is equal to
the sum of the watt meters’ reading in the two-wattmeter method.

6. An unbalanced three-phase system can be analysed using nodal or mesh analysis.
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EXERCISES

Multiple Choice Questions

1.A balanced Y connected load phase sequence is RYB and its R phase to neutral voltage is 5210°V.
Find the line voltage between the phase Y to phase B.

a.V3 %52 —110°V
b.v/3 %52 —80°V
¢.52 —110°V

d.52 —80°V

2. A balanced delta connected load of resistance 10€2, inductance 20mH, capacitance 10uH per phase is
connected to a phase supply of 400V, 50Hz. Find the phase current of the load.

a. 1.282 — 88.16°A
b.1.28  — 188.16°A
c. 1.28488.16°A
d.1.282 —10°A

3. The three-phase delta connected load is supplied by the balanced three-phase supply. With the same
load, the load is reconnected into Y and supplied by the same source.

a. Phase currents will be 1/3 of the previous value

b. Line currents will be 1/3 of the previous value

¢. Power consumed will be 1/4/3 of the previous value

d. Power consumed will be v/3 times of the previous value

e. Power consumed will be same as the previous value

4. In a balanced three phase AC circuit, the sum of all three generated voltages is ?
a. Zero

b. Infinite

c. 1

d. None of the above

5. For a star connection network, consuming power of 1.8kW and power factor 0.5, the inductance and
resistance of each coil at a supply voltage of 230 Volts, 60 Hz is

a. 0.01H, 8 Ohms
b.0.05H, 10 Ohms
¢.0.03H, 7.4 Ohms
d.1H, 7 Ohms




180 | Electric Circuits and Networks

6. A three-phase star connected balanced load of (4+j3) Q per phase is connected across three-phase
supply of 400V, 50Hz supply. Find the current drawn from the supply.

a.20.23A

b. 46.19A

¢.50.54A

d. 50.52A

7. In a three-phase, 3 wire system, the sum of the line currents is equal to..........
a. 3 times of phase current

b.v/3 times of phase current

c. Zero

d. None of the above

8. What is the minimum number of wattmeters required for measuring power of a balanced three-phase
load?

a. 1
b.2
c.3
d. None

9. In the two-wattmeter method with the load balanced, the readings of the wattmeters will be identical
if the power factor is

a. 0.5

b.0.707

c.0.866

d. 1

10. In a balanced star-connected system, line voltages are ....... ahead of their respective phase voltages.
a. 30°

b.60°

c.45°

d.120°

11. Three identical capacitances, each of 45uF, are connected in star. The value of capacitance in each
phase of the equivalent delta-connected load would be ...............

a. 45V3uF
b.15v3uF
c.135uF
d.15puF
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12. A three-phase A connected generator is driving a balanced load such that each phase current is 12 A
in magnitude. When I 26 = 12£30°A, what are the polar expressions for the other phase currents?

a.ly20 = 12£150°A, I;260 = 122 — 90°A
b.ly20 = 122120°A, I;20 = 12230°A
clyz8 = 12£30°A, 1,20 = 122120°A
d.l,20 = 122 — 90°A, I;20 = 122150°A

13. The line R to neutral voltage is 10£15°V, for a balanced three-phase starconnected load with phase
sequence RYB. The voltage of line Y with respect to line B is given by

a./3 * 102105°V
b.102£105°V

cA/3 %102 — 75V
d./3 % 102—90°V

14. The R phase current is 22 — 30°4, for a balanced three-phase delta connected load with phase
sequence RYB. The current of line B with respect to line R is given by

a.v/3 * 220°A
b.220°A

cV/3 %224 —120°A
d/3%22120°A

15. Two wattmeters are used for measuring power of the three-phase star connected load. The meter
readings are 10W and 20W. Find the real power consumed by the load and identify the type of load.

a. 30W, Inductive load
b.10W, Capacitive load
c. 30W, Inductive load
d. None of the above

16. Two wattmeters are used for measuring power of the three-phase delta connected load. The meter
readings are SOW and 20W. Find the real power consumed by the load and power factor of the load.

a.30W, 0.8Lag

b. 70W, 0.8Lead

c. -30W, 0.8Lead

d. None of the above

17. A star connected three-phase load is supplied by the star connected three-phase four wire system. The
line current of the load is 52£10°A, 52 — 10°A and 4£130°A. Identify that whether load is a
balanced or unbalanced. Calculate the current carrying in the neutral line.

a. Balanced Load, Zero
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b. Unbalanced Load, Zero
c. Unbalanced Load, 7.882 — 22.82°A
d. Unbalanced Load, 7.88222.82°A

18. The three impedances Z; = 202£30°Q, Z, = 40260°Q, Z3 = 10£-90°Q are delta-connected to a 400V,
3 @ system as shown in Fig.3. 37. Find the line current ly.

2030°Q 10£-90Q

3 Phase supply
400V

40460°Q

Fig. 3.37: Circuit for Problem 18
a. 11.552 — 30°A
b.5.7754 — 60°A
c.7.152 — 6.2°A
d. None of the above

19. The three impedances Z; = 20£30°Q, Z, = 40260°Q, Z3 = 10£-90°Q are delta-connected to a 400V,
3 @ system as shown in Fig.3.37. Find the current flowing through the impedance Z.

a.11.552 — 30°A
b. 5.77542 — 60°A
c.7.152 — 6.2°A

d. None of the above

20. A three-phase supply supplies a load consisting of three equal star connected resistors. If one of the
resistors is removed, the load power is

a. reduced by 25%
b. reduced by 33.3%
c. reduced by 50%
d. reduced by 66.6%
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Answers of Multiple-Choice Questions

1.b2.c 3.c 4.a 5.c

6.b7.c 8.a 9.d 10.a
11.cl12.d 13.c 14.d 15.a
16.b17.d 18.c 19.b 20. ¢

Short Answer Questions:

. What is the difference between star and delta connections?

. Define phase sequence.

. What is the positive phase sequence and negative phase sequence?

. What is the meaning of balanced load in three-phase systems?

. Differentiate the balanced load and unbalanced load.

. What are the different circuit connections possible in three-phase systems?
. State: the phase voltage and line voltage of three-phase systems.

. State: the phase current and line current of three-phase systems.

. How does the real power measured in three-phase systems?

. What are the methods available to measure the unbalanced load power in three-phase systems?

SO0 N WN -

Long Answer Questions:

9. Explain the star connected load systems. Derive the line current, power consumed by the load.

10. Explain the delta connected load systems. Derive the line current, power consumed by the load.

11. Discuss the power measurement methods in three-phase systems.

12. Write the procedure for obtaining the power measurement in three-phase systems with two-wattmeter
method.

13. Explain the three-phase power measuring procedure using single-wattmeter method under the
balanced load.

Numerical Problems

15. A balanced delta connected load has line current Iz = 5225°A.Find the phase currents Iy, Iyp and
Igg in phasor form.

16. A balanced star connected load has phase voltage Vz = 2154 — 20°V. Find the line voltagesVgy, Vy 5
and Vg in phasor form.

17. A three-phase star connected load is supplied by three-phase star connected generator with a phase
voltage of 240V, 50Hz. It draws a line current of SA with a lagging power factor of 0.966. Draw the
phasor diagram.

18. A three-phase star connected load of (6 + j8)(Q per phase is supplied by three-wire star connected
supply with a phase voltage of 240V, 50Hz. Find the line current of the load, power factor of the load.
Also draw the phasor diagram.

19.1f Vg = 220460V in the given network of Fig.3.38, Find the phase current of the load.
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A three-phase
star connected
power supply
with
RYB phase
sequence

Fig.3.38: Delta connected load of Problem 5

20.A three-phase delta connected load of (6 + j8)Q per phase which is supplied by three-wire star
connected supply with a phase voltage of 240V, 50Hz. Find the line current of the load and power
factor of the load. Also draw the phasor diagram.

21. A three-phase delta connected load is supplied by three-phase star connected generator with a phase
voltage of 240V, S0Hz. It draws a line current of 5A with a lagging power factor of 0.966. Draw the
phasor diagram.

22. A three-phase delta connected load with a resistance of 10Q per phase and an inductance of 10mH is
supplied by balanced three-phase supply of 415V, 50Hz. Calculate the load phase and line voltage,
phase current, power factor at the load end. Draw the phasor diagram.

23. A three-phase motor rating 35kW, 0.85PF, with an efficiency of 90% is supplied by three-phase
supply of 500V, 50Hz, Find the reading of the two-wattmeters connected to measure the motor’s input
power.

24.A load of impedances each (9 + j21)Q is supplied through a line to which a voltage of 415V is
applied. The impedance of each line is (2 + j4) Q. Determine the power input and output when the
load is (a) star connected (b) mesh connected.

25. A three-phase balanced system with a line voltage of 202V supplies a delta connected load with Zp, =
25260°Q.

i. Find the line current.
ii. Determine the total power supplied to the load using two wattmeters connected to the R and B
lines.

26.Two wattmeters are used for measuring the power input and the power factor of an over-excited
synchronous motor which is powered by three-phase supply. If the readings of the meters are (— 2.0
kW) and (+ 7.0 kW) respectively, calculate the input power and power factor of the motor.

27. A balanced star connected inductive load across 415-V, 50-Hz three-phase supply takes a line current
of 25A. The phase sequence is RYB. A single-phase wattmeter has its current coil connected in the
R line and its voltage coil across the line YB. With these connections, the reading is 8 kW. Draw the
vector diagram and find (i) the kW (ii) the kVAR (iii) the kVA and (iv) the power factor of the load.

28.Two wattmeters are connected to measure the input to a 400 V; 3-phase, star connected motor
outputting 24.4 kW at a power factor of 0.4 (lag) and 80% efficiency. Calculate the (i) resistance and
reactance of motor per phase (ii) reading of each wattmeter.

29.Two wattmeters connected to measure the input to a balanced three-phase circuit indicate 2500 W
and 500 W respectively. Find the power factor of the circuit (a) when both readings are positive and
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(b) when the later reading is obtained after reversing the connections to the current coil of one
instrument.

PRACTICAL

1. Use LTspice to determine the line current of Fig. 3.39. Consider the load per phase is (a) 10Q (b)
(5+j10) Q

\

22020V

2202120V 220£-1207

Y

»
-

Fig. 3.39: Y-Y connected three-phase systems for Practical 1

2. Use LTspice to determine the line current, phase current, phase voltage of Fig. 3.40. Consider the
load per phase is (a) 10Q (b) (5+j10) Q

\
=

22020V

220£-120°V
> B

220£120°V

»
!

Fig. 3.40: Y1 connected three-phase systems for Practical 2

KNOW MORE

1. Example 3.3: A balanced three-phase star connected load of (10+j8) Q/phase is supplied from a
balanced three-phase supply of 4002 — 20°V, 50Hz. Find the line current, the real power,
reactive power, apparent power and power factor the load.
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[Notel: The load components are found to do it in LTSpice. R, = 10Q; X; = 8Q; L = % =

&—_ 8 —0.0255H]
2nf 2m(50)

[Note2: The obtained current values are in magnitude (LTspice), convert into the rms values].

&7 Rt}

RE L8
10 0.0255
| van
SINE{0 327 50 00 -50)

AC 327 -50 RS L]
10 0.0255
- ¥bn
SINE(03275000-170) | +
|AC 327 -170- +tran 50m

.
L ven

- " SINE(0 327 50 0 0 -290)
-290

.ac lin 50m 50 50 i e

Fig. 3.41: Y-Y connected three-phase systems for Example 3.3 (LTSpice)

--- AC Analysis ---

f requency: 50 Hz

V(n001) : mag: 327 phase: -50° voltage
V(n003) : mag: 327 phase: -170° voltage
V(n005) : mag: 327 phase: 70° voltage
V(n002): mag: 204.435 phase: 1.29721° voltage
V(n004) : mag: 204.435 phase: -118.703° voltage
V(n006) : mag: 204.435 phase: 121,297° voltage

I(L9): mag: 25.5191 phase: 31.3044° device_current
I(L8): mag: 25,5191 phase: 151.304° device current
I (L7): mag: 25.5191 phase: -88.6956° device current
IL(RI): mag: 25.5191 phase: 31.3044° device current
L (RB) : mag: 25.5191 phase: 151.304° device current
I(R7): mag: 25.5191 phase: -88.6956° device current
I (Ven) : mag: 25.5191 phase: -148.696° device current
I (Vbn) : mag: 25.5191 phase: -28.6956° device_ current
I (Van) : mag: 25,5191 phase: 91.3044° device current

Fig. 3.42: Y-Y connected three-phase systems for Example 3.3 solution (LTSpice)

2. Example 3.5: A three-phase 3 wire 415V, 50Hz system supplies a delta connected load which
consists of resistance 20Q and inductance 10mH in series. Determine the phase current, line
current and also draw the phasor diagram.
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B R7 L7
N\ b AA— T
i 20 0.01
R2
A— T
B J\'{u\ 0.01
vaaﬂ
SINE(D 340 50 0 D -30) 7)
AC 340 -30 R3 R9 L9
AR AA— T —
0.01 20 0.01
Vbn
SINE(D 340 50 0 D -150) )
AC 340 -1 stran 50m
1 Ven
e

SINE(D 340 50 0 0 -270)

-ac fin 50m 50 50 AC 340 -270

Fig. 3.43: Y-0 connected three-phase systems for Example 3.5 (LTSpice)

--- AC Analysis --—-

frequency: 50 Hz

V(n002) : mag: 340 phase: -30° voltage

V (n005) : mag: 340 phase: -150° voltage
V(n008) : mag: 340 phase: 90° voltage
V(n001) : mag: 339.503 phase: -29.9868° voltage

V(n003) : mag: 290.937 phase: -164.105° voltage
V(n004) : mag: 339.503 phase: -149.987° voltage

V(n006) : mag: 290.937 phase: 75.895° voltage
V(n007) : mag: 339.503 phase: 90.0132° voltage
V(n009) : mag: 290.937 phase: -44.105° voltage

I(L9): mag: 29.0443 phase: 111.087° device current
I(L8): mag: 29.0443 phase: -128.913° device current
I(L7): mag: 29.0443 phase: -8.91346° device current
I(R3): mag: 50.3061 phase: 81.0865° device_ current
I(R2): mag: 50.3061 phase: -158.913° device current
I(R1): mag: 50.3061 phase: -38.9135° device current
I(R9): mag: 29.0443 phase: 111.087° device current
I(R8): mag: 29.0443 phase: -128.913° device_ current
I(R7): mag: 29.0443 phase: -8.91346° device current
I(Ven): mag: 50.3061 phase: -98.9135° device_current
I(Vbn): mag: 50.3061 phase: 21.0865° device current
I(Van): mag: 50.3061 phase: 141.087° device_ current

Fig. 3.44: Y-0 connected three-phase systems for Example 3.5 solution (LTSpice)
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3. A three-phase 3 wire system of maximum voltage of 120V/phase, 50Hz having self-impedance
of (0.2+j0.3) Q/phase supplies a star connected load consists of resistance 24 and inductance
60.4mH in series that is connected through the transmission line having impedance of
(0.6+j0.7)Q/phase. Determine the power consumed by the load.

AC 120 30

-ac lin 1 50 50

ue
0.954m/=

Ri_~

0.4~

1
SINE(D 120 50 0 0 30+

SINE(0 12050 DO -90) [+

|aC 120 -d0-'

/ 0.954m =

4 AL s
A SR A Sy
0.6 23¥im 24
RS A2 A2
‘I‘\'A"—r‘? IZZI.II! 51
0.6 :
3,
RG6
R3 | 0.6 2.20m by
0.4 L2

stran G0m
1 0.4
l, Ven
.:' Ty

—r""smm 120 50 0 0 -210)
| AC 120 -210

Fig. 3.45: Three phase power measurement for Y-Y connected three-phase systems

(LTSpice)

;Power Measurement for three phase circuits
.meas start param 20ms

.meas end param 40ms

.meas Vph RMS V(N003) from start to end

.meas Vline RMS V(N003, NO08) from start to end
.meas Iline RMS I(R7) from start to end

.meas RT param sqrt(3)

.meas S param RT*Vline*Iline

.meas P1P avg (V(N0O03)*I(R7)) from start to end
.meas P3P param P1P*3

.meas PF param P3P/S

.meas S2 param S*S

.meas P2 param P3P*P3P

.meas Q2 param S2-P2

.meas Q3Q param sqrt(Q2)

Fig. 3.46: Three phase power measurement Formulas for Y-Y connected three-phase

systems (LTSpice)
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--- AC Analysis ---

frequency: 50 Hz

V(n010) : mag: 120 phase: 30° voltage

IV (n005) : mag: 118.832 phase: 30.4514"° voltage

[V (n001) : mag: 118.124 phase: 30.0293° voltage
V(n017) : mag: 118.832 phase: 150.451° voltage
V{(n01l) : mag: 118.124 phase: 150.029"° voltage
V(n013) : mag: 118.832 phase: -89.5486° voltage
V(n006) : mag: 118.124 phase: -89.9707° voltage
V(n018) : mag: 120 phase: 150° voltage
V(n0l16) : mag: 120 phase: -90° voltage

V (n002) : mag: 116.375 phase: 30.7211"° voltage
IV(n007) : mag: 116.375 phase: -89.2789° voltage
V(n012) : mag: 116.375 phase: 150.721° voltage

V (n003) : mag: 114.732 phase: 29.7121° voltage

IV (n00B8) : mag: 114.732 phase: -90.2879° voltage
V(n014) : mag: 114.732 phase: 149.712° voltage

IV (n004) : mag: 71.1555 phase: 81.3792"° voltage
V(n009) : mag: 71.1555 phase: -38.6208° voltage
V(n015) : mag: 71.1555 phase: -158.621° voltage

I(L9): mag: 3.74992 phase: 111.382° device_ current
I(L8): mag: 3.74992 phase: -128.618"° device current
I(L7): mag: 3.74992 phase: -8.61781° device_current
I(L6): mag: 3.74992 phase: 111.382° device_current
I(L5): mag: 3.74992 phase: -128.618"° device current
I(L4): mag: 3.74992 phase: -8.61781° device_current
I(L3): mag: 3.74992 phase: -128.618"° device_current
I {L2) : mag: 3.74992 phase: 111.382° device current
I(L1): mag: 3.74992 phase: -8.61781° device_current
I(R9): mag: 3.74992 phase: 111.382"° device current
I(R8): mag: 3.74992 phase: -128,618° device current

Fig. 3.47: Voltages and Currents for the Y-Y connected three-phase systems’
simulated output (LTSpice)

start: 20ms=(-33.9794dB,0°)

end: 40ms=(-27.9588dB,0°)

vph: RMS (v(n003))=114.732 FROM 0,02 TO 0.04
vline: RMS (v(n003, n008))=198.722 FROM 0.02 TO 0.04
iline: RMS (i (xr7))=3.74992 FROM 0.02 TO 0.04

rt: sqrt(3)=(4.77121dB,0°)

s: rt*vline*iline=(62.2165dB,0°)

plp: AVG(v(n003)*i(r7))=430.235 FROM 0.02 TO 0.04
p3p: plp*3=(62.2165dB,0°)

pf: p3p/s=(-2.03473e-013dB,0°)

s2: s*s=(124.433dB,0°)

p2: p3p*p3p=(124.433dB,0°)

g2: s2-p2=(-142.158dB,0°)

lg3g: sqrt(g2)=(-71.0792dB,0°)

Date: Tue Feb 28 19:11:10 2023
Total elapsed time: 0.032 seconds.

Fig. 3.48: Active power, Reactive power and Apparent power for the Y-Y connected
three-phase systems’ simulated output according to the formula used (LTSpice)
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Transient Response of
First and Second Order
Electric Gircuits

UNIT SPECIFICS

Through this unit the following topics have been discussed:

o  Transient response of first order source free circuits.

o Concept of first order electric circuits.

e Response of first order circuits _for step dc voltage or current input.

o Concept of second order electric circuits.

e Response of second order circuits for step dc voltage or current input.

o Application of Laplace Transform to find the responses of first and second order electric
circuits.

RATIONALE

This unit deals with transient responses of first order and second orvder electric circuits. These
concepts help the students to find out the responses of practical circuits during transient conditions.
1t also provides a knowledge of time constant of electric circuits. Time constant is important to
understand how fast the response of the circuits reaches to it’s steady state value. Transient analysis
also provides an idea about the natural response and forced response of the electric circuits.
Different combinations of resistance, capacitance and inductance are considered in this unit to
understand this concept. The transient response also includes the behaviour of resistance,
capacitance and inductance for different circuit configurations. The related problems are solved
and included for insight knowledge of this unit. This unit is one of the foundations to understand and
pursue the knowledge in the domain of electrical and electronics engineering.
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PRE-REQUISITES

Calculus

Laplace Transform

UNIT OUTCOMES

List of outcomes of this unit is as follows:
U4-O1: Identify the first and second order electric circuits

U4-02: Apply mathematical formula to calculate the response of a source free first order electric
circuits

U4-03: Apply mathematical formula to calculate the step response of first and second order
electric circuits.

U4-0O4: Apply the concepts of Laplace Transform to solve the first and second order electric

circuits.
Unit-4 EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)
Outcomes
CO-1 CO-2 CO-3 CO-4 CO-5
U4-01 2 2 = 2 -

U4-02 1 1 - 3
U4-03 2 2 - 3 -
U4-04 = = = 3
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4.1 Introduction

The response of electric circuits alters for a short span of time before settling to a steady state value
due to switching actions or any other change in source or circuit elements. This alteration exists
for a short span of time if any other switching action or circuit alternation does not occur again.
This short span of time is known as transient time and response of the circuit during that time
period is known as transient response. This unit deals with transient response of different first
order and second order electric circuits.

4.2 First order differential equations

First order differential equation is represented by,
dy
a = +by =cx (4.1)
Where y is the output, x is input and a, b, ¢ are constant. When the external input is absent the response

of the first order differential equation is known as natural response. In that case, the first order
differential equation is represented as,

dy
aa+by—0

dy b _ (42

In case of electric circuits this condition occurs when an energy storage element (inductor or capacitor)
is not connected to any external independent source rather it dissipates the stored energy to a
resistor. For an example if the R-L circuit is not connected to any external independent source
and the stored energy in inductor decays by dissipating it to the resistance and the response of
the circuit is natural response. The stored energy in inductor results the flow of current through
the circuit. These circuits are known as source free circuits. Source free circuits may include
dependent source. The natural response corresponding to equation (4.2) is given by,

VYV, = Ke—at (4—3)
. . .. . b .
K is a constant and a is the root of the characteristic equation and, a = p If the value of K is evaluated

by using the initial condition of the system then it becomes particular solution. The particular
solution of equation (4.2) is given by,

y=yee * fort>0 (4.4)
Here y(0) = y, att = 0. If the input (x) is present and is a constant or independent variable then the

solution of y is known as forced solution (yy). The complete solution of equation (4.1) is then
given by,

c
y= Ke % + e“tJae“”dt

Y=yt yr (4.5)
Where the second term in equation (4.5) is forced response.
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4.3 First order electric circuits

The response of the series and parallel R-L and R-C circuits are governed by first order differential
equations. Therefore, these circuits are together known as first order electric circuits. If the external
independent source is not connected to these circuits, then they are known as source free electric
circuits and the response of these circuits are known as natural response.

4.3.1 Source free series R-L circuit

R ; i(0) =1y
ANN— =

| vk - ==y -]

Fig. 4.1: Source free Series R-L circuit with i(0) = Iy

A circuit with a series combination of pure resistor (R) and pure charged inductor (L) is considered as
shown in Fig. 4.1. This circuit is not connected to any independent external source. The charged
inductor results a current flow through this source free circuit and decays the stored energy of it
by dissipating the energy across the resistor. The response of this circuit is considered as current
through the circuit. The initial current through the inductor due to the charged inductor at t = 0 is
given by,

i(0) =1, (4.6)

Applying KVL in the circuit shown in Fig. 4.1, the relation between voltage across the inductor and
resistor is given by,

. di(t)

i(OR+L T 0 4.7)
Rearranging and integrating the equation (4.7), it is obtained as,

Ji(f)di(t) _ _Jtﬁdt 48)

5, L) o L
The solution of equation (4.8) is obtained as,
i(t Rt

In % =-7 (4.9)
Expressing the equation (4.9) in exponential form as,

i(t) = Ije~ R/ (4.10)

The natural response of the series R-L circuit is given by equation (4.10) and it depicts that the current
through a charged inductor in a source free series R-L circuit decays exponentially from the initial
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current value (/y). This current is also known as transient current and it’s value becomes zero as
t — oo. The same response is illustrated by Fig. 4.2.

i

Fig. 4.2: Current response of source free series R-L circuit with i(0) = Iy
If t is considered as % in equation (4.10), then the value of i(?) becomes,

i(t) =I,e”! = 0.368I, (4.11)
The ratio of L and R is known as the time constant of the circuit, where time constant is defined as the
time required for the circuit to reach a value of 36.8% of the initial value. Inverse of time constant
is known as damping ratio. Smaller the value of time constant, faster the rate of decay in response.
Generally, time constant is denoted by ‘z” and the time constant for a series R-L circuit is given by,

_L 4.12)

T=p (4.
Voltage across the resistor is given by,

vgr(t) = i()R = I,Re~RE/L) (4.13)
Using equation (4.7), voltage across the inductor is found out as,

di(t

v, (t) = L% = —i(t)R = —IyRe~Rt/L) (4.14)
Power dissipated in the resistor is given by,

p(t) = vr(©)ig(t) = I,’Re~RYL) = [?Re=(2t/D (4.15)

The energy absorbed by the resistor is given by,
I et (1)
W(t) = J]o Re~@t/0)q¢ =§L10 (1—e T ) (4.16)
0

Equation (4.16) clearly shows that as t — oo, the energy absorbed by the resistor becomes the initial
energy available in the charged inductor and it is given by,

1
lim w(t) = ELI(,Z (4.17)

Example 4.1 Find the current flowing through the circuit mentioned in Fig.4.1 if R =10 ohm, L =0.5 H
and initial current is 10 A. Also find the time constant of the circuit.



196 | Electric Circuits and Networks

Solution:
R =10 ohm
L=05H
Lh=10A
The current through the circuit for a source free R-L circuit is given by,
i(t) = Ije~ R/
i(t) = 10e~(10t/05) = 1020t A
Time constant is given by,
L 05

‘[=E— EZO'OSSCC

Example 4.2 Find the power dissipated and energy absorbed by the resistor for a source free R-L circuit
with R =2 ohm, L = 5 H and initial current is 2 A.

Solution:
R =2 ohm
L=5H
Lh=2A
Power dissipated in R is calculated as,
p(t) — IOZRe—(ZRt/L) — (2)2 x 2e~(2X2t/5) — go—0.8t
The energy absorbed by R is calculated as,

2Rt 2X2t

w(t) = %uoz (1 - e‘(T)) — %5 X (2)2 x (1 - e_(T)> = 10(1 — e~08t) |

4.3.2 Source free series R-C circuit

Fig. 4.3: Source free series R-C circuit with v(0) = Vi

A circuit with a series combination of pure resistor (R) and pure charged capacitor (C) is considered as
shown in Fig. 4.3. This circuit is not connected to any independent external source. The charged
capacitor causes the flow of current through this source free circuit and decays the stored energy
of it by dissipating the energy across the resistor. Voltage across the capacitor is considered to be
the response of the circuit. Capacitor is fully charged initially and the voltage across the capacitor
(att = 0) is expressed as,

v(0) = Veo (4.18)
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Applying KCL in the circuit shown in Fig. 4.3, the relation between current through the capacitor and
resistor is given by,

ic(t) +ig(t) =0
dv® , v(©) _

C it R 0 (4.19)
Rearranging and integrating the equation (4.19), the voltage across the capacitor is obtained as,

J”(f) dv(®) _ J JEIP (4.20)

ve, V() o RC
The solution of equation (4.20) is obtained as,
v(t t

In % =7 (4.21)
Expressing the equation (4.21) in exponential form as,

v(t) = Vgoe (7RO (4.22)

VA
Veordoe--.

0.368Veoh

[
'
'
'
[

T

r

Fig. 4.4: Current response of source free series R-C circuit with v(0) =V

The natural response of the series R-C circuit is given by equation (4.22) and it depicts that the voltage
across the charged capacitor in a source free series R-C circuit decays exponentially from the initial
voltage value (V¢p). This voltage is also known as transient voltage and it’s value becomes zero as
t — 00.The response is illustrated by Fig. 4.4.

If t is considered as RC in equation (4.22), then the value of v(z) becomes,
v(t) = Vcoe_l = 0368VCO (4’23)

RC is known as the time constant of the series R-C circuit. Smaller the value of time constant, faster the
rate of decay in voltage across the capacitor. The time constant for a series R-C circuit is expressed
as,

T=RC (4.24)

Current through the resistor is given by,

t V
in(t) = v(®) = %e—(f/RC) (4.25)
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Using equation (4.19), current through the capacitor is found out as,

. dv(t) . Voo _

io(£) = C— == ~ip(t) = —%e (t/RC) (4.26)
Power dissipated in the resistor is given by,

: VCOZ —(2t/RC) VCOZ —(2t/7)

p(t) = v(D)iR() = ——e =% (4.27)

The energy absorbed by the resistor is given by,
Vieo? 1
w(t) = J%e‘(“/m)dt = ECVCOZ(1 — e~ (YM) (4.28)

0

Equation (4.28) clearly shows that as t — oo, the energy absorbed by the resistor becomes the initial
energy available in the charged capacitor and it is given by,

w() = %CVOZ (4.29)

Example 4.3 Find the current flowing through the capacitor for the circuit given below considering the
initial voltage across the capacitor as 10 V. Also find the time constant of the circuit.

VW' W\

10€) 76

Tl
£+ =2 T

Solution:
C=05F
Veo=10V

Equivalent resistance of the circuit is calculated as,

15
Req = (10 + 5)]15]|(7 + 8) = 3 = 5 ohm
Time constant of the circuit is calculated as,
T=R,qC=5%05=25sec
Current through the capacitor is given by,

l(t) = ?e_(%) = %6_(%) — 2e—0.4t A
eq
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Example 4.4 Find the current flowing through the 5 Q resistor of the circuit mentioned in Example 4.3
Also calculate the voltage across that resistor and power dissipated in that same resistor. Consider
the same initial condition as mentioned in Example 4.3.

Solution:

As all the three parallel branches of resistors have equal resistance, then the current flowing through each
branch or current through 5 Q resistor is calculated as,

i(t 2
isq(t) = % = §e‘°"” = 0.67e704A

Voltage across that resistor is calculated as,
USQ(t) = lSQ(t) X 5= 2.226_0'4t \'4
Power dissipated in 5 € resistor is calculated as,

p(t) = [isq()]?R = [0.67e 04]2 x 5 = 3.33¢~08t W

4.3.3 Step response of series R-L circuit

When the voltage or current source of a circuit is applied suddenly and if the source can be modelled as
step function then the response of the circuit is known as step response.

R i) =1, x
A AN .\'Il'g —-"I I

""'*"R*—PI il |4—+ vp - =
o

Fig. 4.5: Series R-L circuit with step input voltage and initial condition i(0) = Iy

A circuit with a series combination of pure resistor (R) and pure charged inductor (L) with an initial
current of /y is excited by an independent dc voltage source as shown in Fig. 4.5. Initially the
voltage source was disconnected from the circuit and then the dc voltage is suddenly applied to the
circuit at t = 0 by closing the switch (SW). The response of this circuit is considered as current
through the circuit. The initial current through the circuit due to the charged inductor at t = 0 is
given by,
i(0)=1, (4.30)

Applying KVL in the circuit shown in Fig. 4.5, the relation between voltage across the inductor and
resistor is given by,

. di(t)
l(t)R + L T = Vu(t) (4—31)

u(t) represents the unit step function. Rearranging the equation (4.31), it is obtained as,
dit) R. . Vu(®)

ac TTiO=77

(4.32)
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The solution of equation (4.32) is obtained by comparing it with the solution of equation of (4.1) as
mentioned in equation (4.5),

i(t) = Ke(Rt/L) 4 o~(Re/L) J T omm gy (4.33)
The forced response part of equation (4.33) is given by,
Vv Vv
i(0); = e~®t/D J o@D = (4.34)

Inductor does not allow sudden change in current through it as per the theory of electromagnetic
induction. Hence, the current through the inductor just before the switching is same as the current
through it just after switching as mentioned below,

i(07)=i(0") =1, (4.35)
With this initial condition the equation (4.33) becomes,

Vv
lo=K+ %
K
Vv

=1, — i (4.36)
Substituting the value of K and i(t) in equation (4.33), the complete solution becomes,

i(t) = (10 - %) e~ (RU/L) ¢ % (4.37)
The step response of the circuit can be expressed as,

I, t<O0
0= {zoe—cfm bo(L-e @), >0 (*:37a)

Equation (4.37) depicts the step response of a series R-L circuit. The ratio of L and R is the time constant
of this circuit. From this equation, it is clear that the current decays exponentially from an initial

value of / and settles at % att — oo if the circuit is excited by a step voltage function. The response
is demonstrated in Fig. 4.6

Y

)
Fig. 4.6: Current response of series R-L circuit with step input voltage and initial condition i(0) = Iy
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Ift — oo then the final response of the circuit, i.e., i (c0) will be the ratio of applied voltage and resistance.
This is called the steady state response of the circuit. The equation (4.37) can be expressed as,
i(t) = [i(0) — i(0)]e~/D) + j(o0) (4.38)

It is clear from the equation (4.38) that initial current value (i(0), final current value i(o) and the time
constant of the circuit(z) are required to find out the step response of a series R-L circuit.

Voltage across the resistor is given by,
Rt

ve(®) = i(OR = (I,R = V)e~(T) + v (4.39)
It is clear from the equation (4.39) that the voltage across the resistor decays exponentially and it settles
at J at steady state. Similarly the Using equation (4.7), voltage across the inductor is found out as,

v, (t) =L d;—(tt) = (V — I,R)e~Rt/L) (4.40)

Instead of an initially charged inductor, if an uncharged inductor is used in the same circuit then the initial
current value is given by,

i(0)=0 (4.41)
In that case, the step response of the circuit becomes,
0, t<o0
() =1y
i(t) E(1—e%Vﬂ), t>0

Voltage across the inductor and voltage across the resistor with zero initial current through the inductor
is calculated as,

(4.42)

v, (t) =L d;(tt) = Ve~ /D (4.43)
vr(t) = iR =V(1—e /D) (4.44)

Equations (4.42) and (4.44) depict that the current through the inductor rises exponentially and voltage
across it decays exponentially when a series R-L circuit with zero initial current through the
inductor is excited by a step voltage function. The same is shown in Fig. 4.7.

ik v

L B T e

0.632(V/R) {=annes

0.368V ===

Alecccncancans

g

=~y

(a) (b)
Fig. 4.7: Current through inductor and voltage across inductor of series R-L circuit with step input
voltage and zero initial condition
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Example 4.5 For the circuit given below, SW1 is closed at t =0 and SW2 is closed at t = 2 sec. Find the
current flowing through the circuit for t > 0. Also find the time constants of the circuit for different
time intervals.

SW1

20\-'(

Solution:
For the time interval 0 < t < 2, only SW1 is closed. During that time interval the equivalent resistance
of the circuit is obtained as,
Regi =2+2=4Q
Time constant of the circuit during this time interval is calculated as,
L 5

=-=1.25sec
Regi 4

T =

The current through a series R-L circuit for step input voltage is given by,
i(0) = [i(0) — i(e0)]e~/) + i(o0)
Here,

i(0)=0
v o 20

l(OO) B Reql 4
i(t) = [0 —5]e” (/125 4 5 = 5(1 — e *8) A
For t = 2, SW2 is closed. Equivalent resistance for this time interval is calculated by using the concept
of Thevenin’s equivalent resistance at the inductor terminal as,
Reqz =2]|12+2=3Q
Time constant of the circuit for this time interval is calculated as,
L 5

= =-=167
Ty Ross 3 sec

5A

If the voltage of the node joining SW2 and two 2 Q resistors is considered as ¥, then to find out i(c0),
applying KCL at this node as,

20_V1+5_V1_V1
2 2 2
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25
V=5 =833A

_ 8.33
11(00) = T = 4167 A

Current flowing through the circuit during this interval,
5(0) = [11(2) = iy (0)]e /D + iy (o0)
i1(2) =51 —-e92)=5x%x(1-0.2)=399A
Hence the current is calculated as,
i1(t) = [3.99 — 4.167]e~(t/167) + 4167
i1(t) =4.167 — 0.176e 796 A

Example 4.6 A coil has a resistance of 5 Q and inductance of 2 H is connected to a dc voltage source of
100 V through a switch. The switch is closed at t = 0. Calculate the current flowing through the circuit
and voltage across the resistor of the coil for t >0. Also find the time constant of the circuit and steady
state current through the circuit.

Solution:
Current through the circuit at t = 0 is given by,

i(0)=0
R=5Q
L=2H
V=100V
Time constant of the circuit is calculated as,
L 2
T=E=g=0.4sec
Current through the circuit is calculated as,

i(t) = % (1-e WD) = 1;ﬂm —e W08 ) =20(1—e25) A
Voltage across the resistor for t > 0,

vp(t) =V(1—e /D) =100(1 — e 25t) V
Steady state current is obtained as,

100

lsteady_state = 5 =20A

4.3.4 Step response of series R-C circuit

A circuit with a series combination of pure resistor (R) and pure charged capacitor (C) with an initial
voltage of Vo is excited by an independent dc voltage source as shown in Fig. 4.8. Initially the



204 | Electric Circuits and Networks

voltage source was not connected and then the dc voltage is suddenly connected at t = 0 by closing
the switch (SW).

R

c
J\/\/\I SW)( “
t=0‘|<- () =Vey ol

IQ

Fig. 4.8: Series R-C circuit with step input voltage with initial condition v(0) = Vo
The response of this circuit is considered as current through the circuit. The initial voltage across the
capacitor due to the charged capacitor at t = 0 is given by,
v(0) = Vg (4.45)
As the voltage across the capacitor does not change suddenly, the voltage across the capacitor just before
closing the switch is same as the voltage across it just after closing the switch. It is expressed as,

v(07) = v(0%) = Vg (4.46)

Applying KCL in the circuit shown in Fig. 4.8, the relation between current through the capacitor and
resistor is given by,

ic(t) +ig(t) =0
dv(t) v(t)—TVu(t)
=0
YT R
For ¢ > 0, the above equation becomes,

c dv(t) 4 v(t)=V

it R =0 (4.47)
Rearranging and integrating the equation (4.45), it is obtained as,
[Oaw 1, 640
vee VO =V o RC ’
The solution of equation (4.20) is obtained as,
In v-v.__t (4.49)
Veo =V RC
Expressing the equation (4.49) in exponential form and rearranging it as below,
v(t) =V + (Vgo — V)e~ /RO (4.50)

Equation (4.50) depicts the step response of a series R-C circuit and v(t) represents the voltage across the
. 1. . L
capacitor. — is the time constant of this circuit.
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The step response of the voltage across the capacitor can also represented as,

o(6) = { Veo, t<o
V4 Veo—V)e D,  t>0

From the equation (4.51), it is clear that the voltage across the capacitor increases exponentially from an
initial value of V¢y and settles at IV as t — oo if this circuit is excited by a step voltage function

with an initial condition of V¢y voltage across the capacitor. The response is demonstrated with the
help of Fig. 4.9

(4.51)

=

T

Fig. 4.9: Voltage response of series R-C circuit with step input voltage and initial condition v(0) = Vo
The equation (4.50) can also be expressed as,
v(6) = [1(0) = v(e0)]e /D + v(o0) (4.52)

It is clear from the equation (4.52) that the initial value of voltage across capacitor, v(0), final value of
voltage across capacitor, v(o0) and the time constant of the circuit(7) are required to find out the
step response of a series R-C circuit with an initially charged capacitor.

Current through the resistor is given by,

NORRC AU LA (453)

Using equation (4.19), current through the capacitor is found out as,

dv(t) — _ (VCO — V) e~ (t/RC)
dt R
Both the equations (4.53) and (4.54) confirms that the current through this circuit is exponentially

i.(t)=C

(4.54)

decaying from an initial value of @ and settles at zero as as t — oo.
Instead of an initially charged capacitor, if an uncharged capacitor is used in the same circuit then the
initial voltage value across the capacitor is given by,
v(0) =0 (4.55)
In that case, the step response of the circuit becomes,

_ 0, t<o0 AEE
v(® = {v(1 —e"®M), t>0 (4.56)
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Current through the circuit with zero initial voltage across the capacitor is calculated as,
|4
=z e~ (t/RO) (4.57)

Equations (4.56) and (4.57) depicts that the voltage across capacitor rises exponentially from zero and
settles at /" and current through it decays exponentially from % and settles at zero as t — oo, when

a series R-C circuit with zero initial voltage across capacitor is excited by a step voltage function.
The same is shown in Fig. 4.10.

v A ik
[/--

0.632V

0.368(V/R)}

(a) (b)
Fig. 4.10: Voltage across capacitor and current through capacitor of series R-C circuit with step input
voltage and zero initial condition

Example 4.7 A step input voltage source of 10 V is applied to a series R-C circuit of resistance of 10 Q
and capacitance of 0.1 F at t = 0. Calculate the steady state charge of the capacitor. Find the time taken
to charge the capacitor up to 75% of its steady state value.

Solution:
R=10Q
C=0.1F
V=10V

Time constant of the circuit is obtained as,
T=RC=10x0.1=1sec

Voltage across the capacitor for t > 0 is obtained as,
v(t) = V(1—e @D )=101-e")V

Steady state voltage across the capacitor is calculated as,
Vsteady state = 10V

Steady state charge in the capacitor is obtained as,

Qsteady_state =CX Vsteady_state =01x10=1C

Time taken by the circuit to charge the capacitor up to 75% of its steady state value is calculated as,
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0.75 X Qsteady state = Qsteady_state(1 — e~ /D )
075= (1—e WD) =(1-e")

e t=0.25

t = 1.386 sec

Example 4.8 A step input voltage source of 500 V is applied to a series R-C circuit with resistance of 50
Q and capacitance of 0.1 F at t = 0. The initial charge of the capacitor for t <0 was 100 C. Calculate the
current through the circuit for t > 0.

Solution:

R =50Q

C=0.01F

V=500V

Qo =100C

Time constant of the circuit is obtained as,
T=RC =50x0.01=0.5sec

Initial voltage across the capacitor for t <0 is calculated as,

Qo 100
Current through the circuit is calculated as,
i(®) = —(VC"R_ ") (o) = —100053 200 /05 = 102t p

4.3.5 Step response of parallel R-L circuit

R
®O.lz 3

Fig. 4.11: Parallel R-L circuit with step input current

A circuit with a parallel combination of pure resistor (R) and pure inductor (L) connected across an
independent dc current source as shown in Fig. 4.11 is considered for analysis. Initially the switch
(SW) was closed and no current was flowing through the parallel combination of R and L. The
switch is open at t = 0 and current starts flowing through R and L. The response of this circuit is
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considered as current through the circuit i.e. parallel combination of R and L. The initial current
through the parallel combination of R and L is zero as the inductor was not charged initially.

Applying KCL in the circuit shown in Fig. 4.11, the relation between current through inductor, resistor
and the source current is given by,

ig(t) +i,(t) = Tu(t) (4.58)
As the R and L are connected in parallel, the voltage across them are same and it is shown as,

di, (t)

Iu(t)R =i, ()R + Ldié—gt) (4.59)

Rearranging the equation (4.59), it is obtained for > 0 as,

di,() R _IR
dt + lL(t) Z = T (4—60)

The solution of equation (4.60) is obtained as,

() = Ke-®R/L) 4 o=(Re/L) J % e Rt/ g (4.61)
The forced response part of equation (4.61) is given by,
IR
i1 (t); = e~ (®/D J e = (4.62)

Inductor does not allow sudden change in current through it as per the theory of electromagnetic
induction. Hence, the current through the inductor just before the switching is same as the current
through it just after switching as mentioned below,

i,(07)=1i0")=0 (4.63)
With this initial condition the equation (4.61) becomes,

0= K+1

K=-1 (4.64)
Substituting the value of K and i, (t) in equation (4.61), the complete step response for inductor current

becomes,

i,(t) =1(1— e (R/D) (4.65)
Step response for current through the resistor is calculated as,

ig(t) = I—i,(t) =Ie~RE/D) (4.66)

Equations (4.65) and (4.66) depict that the current through the inductor rises exponentially and it will
reach to a steady state value of / as t — oo. Similarly the current through the resistor decays
exponentially from an initial value of / and it will become zero as t — oo. The same is illustrated
in Fig.4.12.
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Fig. 4.12: Current through inductor and resistor of parallel R-L circuit with step input current and

zero initial condition

If the switch (SW) is open for a long time, then the entire source current flows through the inductor and

no current flows through the resistor.

Example 4.9 A step input current source of 10 A is applied across a parallel combination of R and L with
R=10Q and L =4 H at t = 0. Find the time constant of the circuit, current through the inductor
for t > 0 and for t = 5 times of time constant of the circuit. Find the steady state energy stored in

the inductor.

Solution:
R=10Q
L=4H
1=10A
Time constant of the circuit is obtained as,
T=£=i=0.4sec
R 10

Current through the inductor for t > 0 is calculated as,
Rt

_(_) _1ot
i, (t) =I(1—e p ): 10x(1-e 4)=10(1—e—2-5f)A
Current through the inductor for t = 5t is calculated as,
i (t) =10(1 — e™25%5%04) = 10 x 0.993A =9.93 A
Steady state current through the inductor is given by,
I} steady state = 10 A
Energy stored in inductor at steady state is calculated as,

1 2 1
E = S L(IL steady stare)” =5 % 4% (10)* = 200]
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4.3.6 Step response of parallel R-C circuit

Fig. 4.13: Parallel R-C circuit with step input current

A circuit with a parallel combination of pure resistor (R) and pure capacitor (C) connected across an
independent dc current source as shown in Fig. 4.13 is considered for analysis. Initially the switch
(SW) was closed and no current was flowing through the parallel combination of R and C. The
switch is open at t = 0 and current starts flowing through R and C. The response of this circuit is
considered as current through the circuit i.e. parallel combination of R and C. The initial voltage
across the C is zero as the capacitor was not charged initially.

Applying KCL in the circuit shown in Fig. 4.13, the relation between current through capacitor, resistor
and the source current is given by,

ic(t) +ig(t) = Iu(t) (4.67)
As the R and C are connected in parallel, the voltage across them are same and it is shown as,
ic(t)dt
ir(OR = fc% (4.68)
Then equation (4.67) can be presented as,
dig(t)R
C Rdt +ip(t) = Iu(t)
dig(t) 1 . I
i +ELR(t) == fort>0 (4.69)

The solution of equation (4.69) is obtained as,
in(t) = Ke—(/RO) 4 o=(t/RO) J R’—Cecf/mdt (4.70)
The forced response part of equation (4.70) is given by,
I
[ = _(t/RC) —_— (t/RC) =
ir()f=e JRC e dt =1 (4.71)

Initially when the switch was closed then no current was flowing through the parallel combination of R
and C as current flows through the minimum resistance path.
ir(0)=0 (4.72)
With this initial condition the equation (4.70) becomes,
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0=K+1I
K=-1 (4.73)

Substituting the value of K and ir(t); in equation (4.70), the complete step response for the current
through resistor becomes,

ir(t) = 1(1 — e~ W/RO) (4.74)
Step response for the current through the capacitor is calculated as,
ic(t) = I—ig(t) =Ie~/RO) (4.75)

Equations (4.74) and (4.75) depict that the current through the resistor rises exponentially and it will
reach to a steady state value of / as t — co. Similarly the current through the capacitor decays
exponentially from an initial value of / and it will become zero as t — oo. The same is illustrated

in Fig.4.14.
ip & ich
e PHPT SR I
0.632§=====->

0.3681 t
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Fig. 4.14: Current through resistor and capacitor of parallel R-C circuit with step input current
and zero initial condition

If the switch (SW) is open for a long time, then the entire source current flows through the resistor and
the branch where capacitor is connected behaves as an open circuit as no current flows through the
capacitor.

Example 4.9 A step input current source of 10 A is applied across a parallel combination of R and C with
R=20Q and C=0.1 F at t=0. Find the current through the capacitor and resistor for t > 0. Find
the power dissipated in the resistor for t > 0.

Solution:
R=20Q
C=0.1F
I=10A
Time constant of the circuit is obtained as,
T=RC=20x%X0.1=2sec
Current through resistor is given by,
ir(t) =1(1—e WERD) =10 % (1 —e~®/2) =10(1 — e *5t) A
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Current through the capacitor is calculated as,

ic(t) = I—ig(t) = le /RO = 10e05t A
Power dissipated in the resistor is given by,

pr(t) = [ir(D)]?R = [10(1 — e7%5) ]2 X 20 = 2000(1 — e~ %5t)2 W
4.4 Second order differential equations

Second order differential equation is represented by,

d’y  dy
aﬁ+ba+cy=0 (4.76)
Where y is the output and a, b, ¢ are constant. The solution of equation of equation (4.76) is given by,
y = Kje%t + K,e%! (4.77)
Where K; and K> are constants and a; and o, are the roots of the characteristics equation given by,
ap?’+bp+c=0 (4.78)
The values of a; and a» are given by,
—b +Vb? — 4ac
a = a (4.79)
—b — Vb2 — 4ac
a, = a (4.80)

4.5 Second order electric circuits

The response of the series and parallel R-L-C circuits are governed by second order differential equations.
Therefore, these circuits are together known as second order electric circuits. Normally, two energy
storage elements and resistances form a second order electric circuit.

4.5.1 Step response of series R-L-C circuit

R L
SR [(YYY)
NN

I'(P C=

Fig. 4.15: Series R-L-C circuit with step input voltage

A circuit with a series combination of pure resistor (R), pure inductor (L) and pure capacitor (C)
connected across an independent dc voltage source as shown in Fig. 4.15 is considered for analysis.
Initially the switch (SW) was open and no current was flowing through the circuit. The switch (SW)
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is closed at t = 0 and current starts flowing through the circuit. The response of this circuit is
considered as current through the circuit.

Applying KVL in the circuit shown in Fig. 4.15, the relation between the voltage across resistor, inductor,
capacitor and the source voltage is given by,

i()R+L d;(tt) +%J i()dt = Vu(t)
i()R+L d;(tt) +%J it)dt=V fort>0 (4.81)

Taking differentiation in both side, it is obtained as,
d?i(t) di(t) i

acz TR teT

(2+R +1>'—0 (4.82)
PPrIPT I T '

Equation (4.82) is a linear, homogeneous, second order differential equation. The characteristic equation
is given by,

0

, R 1
2B r L Zo (4.83)

The roots of the characteristic equation are obtained by applying Shreedhara Acharya's formula as,

_Ry (5)2 _x
L L LC

D1, P2 = ) (4.84)

Let us consider,
_ _R 4.85
- &Y -4 86
v=1\ar) TIc (4.86)

[B| is basically the neper frequency and i is the resonant frequency of the series R-L-C circuit. Then p;,
and p> becomes

Pi=B+Yy (4-87)

p2=B-v (4-88)
The solution of the differential equation mentioned in (4.82) is then given by,

i(t) = KieP1t + K,eP2t (4.89)

Where, K; and K are constants.

The solution mentioned in (4.89) can be any one of the following based on the relation between neper
frequency (B) and resonant frequency,
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Condition 1: R\? 1 Over-damped response
) >

Condition 2: | Critically damped response
@)~z

Condition 3: R\? 1 Under-damped response
) <%z

Condition 1:
For this condition the value of y is real and positive. Hence, the values of p;, p, are real and unequal
which is given by,
P1=B+y
P2=B~-v
Hence the solution is obtained as,
i(t) = KjeBt 4 K,eB-1t
i(t) = ePt(K,e?t + Kye %) (4.90)
The over-damped current response is illustrated in Fig. 4.16. This figure shows that the response decays
and approaches zero as time increases.

ik

Fig. 4.16: Over-damped current response of series R-L-C circuit with step input voltage and zero initial

condition
Condition 2:
For this condition the value of y is zero. Hence, the values of p;, p, are real and equal which is given
by,
pr1=p1=p

Hence the solution is obtained as,
i(t) = K ePt + K,tePt

i(t) = eP{ (K, + Kyt) (4.91)
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The critically damped current response is illustrated in Fig. 4.17. The response reaches to its maximum
value first at one time constant and then decays as time progresses.

Fig. 4.17: Critically damped current response of series R-L-C circuit with step input voltage and zero
initial condition
Condition 3:

For this condition the value of y is imaginary. Hence, the values of p;, p, are complex conjugates and
they are presented as,

p1=B+jy
p2=PB—Jy
Hence the solution is obtained as,
i(t) = KjeB+int  g,eB-int
i(t) = ePt (K, e/t + Kye Jvt) (4.92)

The under-damped current response is illustrated in Fig. 4.18. The response for this condition is
oscillatory and exponentially damped in nature.

i

JANA .
\/ U V '
Fig. 4.18: Under-damped current response of series R-L-C circuit with step input voltage and zero
initial condition

Example 4.10 A series R-L-C circuit with R =10 Q, L =2 H and C = 2 F is excited by a dc step voltage

of 40 V at t =0. Find the current flowing the circuit at t > 0.
Solution:
R=10Q
L=2H
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C=2F

V=40V

For t > 0 the current through the circuit is mentioned through the relation mentioned below by,
. dit) 1.
NQR+Ldt+EJmﬂﬂ_V

Differentiating the above equation it is obtained as,

i) | di@) | §

=0
dt? +R dt C
(2+R +1>'—0
PP TIe)t T

The characteristic equation is given by,
p? + Bp + L 0
L LC
p? + E10 F =
2 2X%X2
p2+5p+025 =0

The roots of the characteristic equation are obtained by applying Shreedhara Acharya's formula as,

0

-5++v25-1

Py Pz=f
—-54++v25-1
—5—-+v25—-1

The solution of the second order differential equation is obtained as,
i(t) = Kye~005t + K,e=495t
K; and K are constant and they are evaluated by the initial conditions.
i(0)=0 and%f i(0)dt =0
For t = 0 the current through the circuit is written through the relation mentioned below by,

di(0) 1

i(0) X 10 + 2 x +§Ji(0)dt=40

dt
di(0)
2 X T 40
di(0)
P 20 A/sec

Substituting, i(0) = 0 in the solution it is obtained as,
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1(0)=0=K160+ Kz€0=K1+ Kz (a)
Differentiating the solution it is obtained as,
di(t
d(t) = _O.OSKle_O'OSt - 4.95K26_4'95t
It is already known as,
di(0
d(t ) =20 A/sec
Hence,
di(0)
- 20 = —0.05K; — 4.95K, (b)

Solving (a) and (b), the values of K; and K are calculated as,
K, = —4.08 and K; = 4.08

Current flowing through the circuit for t > 0 is then obtained as,
i(t) = 4.08e7005¢ — 4,08e~*%t A

4.5.2 Step response of parallel R-L-C circuit

A circuit with a parallel combination of pure resistor (R), pure inductor (L) and pure capacitor (C)
connected across an independent dc current source as shown in Fig. 4.19 is considered for analysis.
Initially the switch (SW) was closed and no current was flowing through the circuit. The switch
(SW) is open at t = 0 and current starts flowing through the parallel combination of R-L-C. The
response of this circuit is considered as current through the circuit.

N

Fig. 4.19: Parallel R-L-C circuit with step input current

Applying KCL in the circuit shown in Fig. 4.19, the relation between the current through resistor,
inductor, capacitor and the source current is given by,

ig(®) +i(t) +ic(t) =Tu(t) (4.93)

As the R, L and C are connected in parallel, the voltage across them are same and it is considered as v(z)
shown as in Fig. 4.17. For ¢ > 0 the equation (4.93) becomes,

v(t) dv(®)  [v(®)dt
R +C T + I =1

(4.94)
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Taking differentiation in both side of equation (4.94) and rearranging them, it is written as,
1 dv(t) d?v(t) wv(t)
Ra T¢ae T
d?v(t) 1 dv(t) v(t)

diz TRC dr TIc
(p2 +— ! p+ ! )v(t) =0 (4.96)
RC

Equation (4.96) is a hnear, homogeneous, second order differential equation. The characteristic equation
is given by,

1 1

p%+ rePTIe T 0 (4.97)

The roots of the characteristic equation are obtained by applying Shreedhara Acharya's formula as,
1 1\2 4
“re () i
P, P2 = > (4.98)

It is assumed that,

1 1
C002 = C 28wy = RC and wg =/ wp? — (§wy)?

wy 1s the resonant frequency, ¢ is the damping ratio and w, is the damping frequency. The solution of
equation (4 96) is then given by,

=0

=0 (4.95)

v(t) = —e ~$@ot sin w4t (4.99)
wyC

Current through the resistor is obtained as,

v(t) 1 .
ip(t) = me ot sin wyt (4.100)
Current through the inductor is given by,
t
v(t)dt 1 e~§wot w
i,(t) = Jy = sin (a)dt —tan~! —d> (4.101)
L wyLC /(fwo)z — wy? Ew,
Current through the capacitor is given by,
dv(t) e $@ot w
ict)=¢C © = {(Ewy)? + wy?}sin (a)dt - tan‘l—d> (4.102)
dt Ewy

4.6 Application of Laplace transform in electric circuits

Laplace transform is an integral transformation of a function from time domain to frequency domain. It
is a very useful technique to solve linear differential equation. It is understood from the previous
sections that the transient response of first order and second order electric circuits are represented
by linear differential equations. Hence, this technique is very useful for finding the transient
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response of first and second order electric circuits. Moreover, in Laplace transform the initial
conditions (voltage or current in energy storage elements) are taken care of automatically unlike
in the time domain. This technique involves three major steps to obtain the solution of a differential

equation.
Step1: Transforming the differential equation in algebraic equation.
Step2: Obtaining the solution of the constituent algebraic equation.

Step3: Transforming back the solution in such a way that it represents the solution of the original
differential equation.

4.6.1 Step response of series R-L circuit using Laplace transform

R sL
M Hr?(
AN

Ws(")

I(s)

Fig. 4.20: Series R-L circuit with step input voltage in Laplace domain

A circuit with a series combination of pure resistor (R) and pure inductor (L) is energised by an
independent dc voltage source as shown in Fig. 4.20. Initially the voltage source was disconnected
from the circuit and then the dc voltage is suddenly applied to the circuit at t = 0 by closing the
switch (SW). The response of this circuit is considered as current through the circuit. The initial

current through the circuit at t = 0 is given by,

i(0)=0 (4.103)
Applying KVL in the circuit shown in Fig. 4.20, the relation between voltage across the inductor and

resistor is given by,

. di(t)

l(t)R + L T = Vu(t) (4—104—)
The equation (4.104) is represented in Laplace domain as,

I(s) R + L[sI(s) — i(07)] =g
I(s) (R +sL) =g
14
1© = e (4.105)

s(R/ )
Using the partial fraction concept of Laplace transform it can be written as,
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1(s) X + d (4.106)
s) = — _— .
s (R/ L+s)
Where the values of X and Y are given by,
v/
I Vv
= |15 =— (4.107)
R/ L9, R
v/
_ | L —
Y = S =-7 (4.108)
s=—R/L
Substituting the values of X and Y in equation (4.106), it becomes,
Vv Vv
I(s) = /R _ = /R (4.109)
s B/ +s)

The solution of equation (4.109) is obtained in time domain by taking inverse Laplace transform of
(4.109) for ¢t > 0 as,

i(t) = %(1 — e~ RY/L)) (4.110)

Equation (4.110) presents the current flowing through the circuit at ¢ > 0.

4.6.2 Step response of parallel R-C circuit using Laplace transform

A circuit with a parallel combination of pure resistor (R) and pure capacitor (C) connected across an
independent dc current source as shown in Fig. 4.21 is considered for analysis. Initially the switch
(SW) was closed and no current was flowing through the parallel combination of R and C. The
switch is open at t = 0 and current starts flowing through R and C. The response of this circuit is
considered as current through the circuit i.e parallel combination of R and C. The initial voltage
across the C is zero as the capacitor was not charged initially.

@l § L

Fig. 4.21: Parallel R-C circuit with step input current in Laplace domain

Applying KCL in the circuit shown in Fig. 4.21, the relation between current through capacitor, resistor
and the source current is given by,

ic(t) +ig(t) = Iu(t) (4.111)
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As the R and C are connected in parallel, the voltage across them are same and it is shown as,

ic(t)dt
ir(OR = fc% (4.112)
Multiplying both side by R, the equation (4.111) can be presented as,
Ric(t) + Rigz(t) = [u(t)R
ic(t)dt
Ric () + fc% = Iu(t)R (4.113)
Taking Laplace transform in both side of equation (4.113), it is obtained as,
Ic(s) Q(07) IR
Rlc(s) + Cs Cs s
Ic(s) IR
RI =— 4114
() + L= (4114)
Rearranging the terms of equation (4.114), it is represented as,
1 IR
I R+—|=—
e(s) [ + Cs] s
I
Ic(s) =7——= (4.115)
(s+7)
RC

The solution of equation (4.115) is obtained in time domain by taking inverse Laplace transform of
(4.115) for t > 0 as,

ic(t) = Ie t/RC (4.116)

Equation (4.116) presents the current flowing through the capacitor at ¢ > (. Current flowing through the
resistor is given by,

ir@®) =1—ic(t) =1(1—et/RC) (4.117)

4.6.3 Step response of series R-L-C circuit using Laplace transform

R sL
s [YYY )
NN

15Q) e —

I(s)

Fig. 4.22: Series R-L-C circuit with step input voltage in Laplace domain

A circuit with a series combination of pure resistor (R), pure inductor (L) and pure capacitor (C)
connected across an independent dc voltage source as shown in Fig. 4.22 is considered for analysis.
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Initially the switch (SW) was open and no current was flowing through the circuit. The switch (SW)
is closed at t = 0 and current starts flowing through the circuit. The response of this circuit is
considered as current through the circuit.

Applying KVL in the circuit shown in Fig. 4.22, the relation between the voltage across resistor, inductor,
capacitor and the source voltage is given by,

i()R+L d;(tt) +%J i()dt = Vu(t)

i()R+L d;(tt) +%J it)dt=V fort>0 (4.118)
Taking Laplace Transform in both side, it is obtained as,

I($)R + L[I(s)s — i(0-)] + % [@ - Q(g_)] - g (4.119)

Taking the initial conditions as zero, equation (4.119) can be written as,

%
()= 77—
(Ls? +Rs +3)
c
%
I(s) = ——F—F~ (4.120)
(52 +-s+ —)
L LC
Equation (4.120) can be written as,
v
I(s) = ——2—— 4121
) +a)s+p) ( )
Where the values of a and 8 by applying Shreedhara Acharya's formula as,
SR (E . 4122
wb= % \a) "1c (4.122)

The equation mentioned in (4.121) can be solved by considering any one of the following conditions,

Condition 1: R\? 1 Over-damped response
) >

Condition 2: R\? 1 Critically damped response
@)~z

Condition 3: R\? 1 Under-damped response
) <%

Condition 1:

During this condition both @ and § are real and unequal. Using the partial fraction concept of Laplace
transform the equation (4.121) can be written as,
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X Y
I(s) = Gt h) + G+ R (4.123)
Where X and Y are given by,
X = [V—/L] -V (4.124q)
(s+Bs+a)l,_ , LB-a)
_ [ V/L ] __r (4.124b)
(sta)s+B/l__, Lla=p)
Equation (4.123) can be written as,
I(s) = V/L VL (4.125)

+
B-a)s+pB) (a=PB)(s+p)
The solution of equation (4.125) is obtained in time domain by taking inverse Laplace transform of
(4.125) for t > 0 as,

VIL g V/IL

i(t) = Me + @ _ﬁ)e (4.126)
Condition 2:
For this condition the values of a and § are real and equal which is given by,
a=B=K
Hence the equation (4.121) can be written as,
V/L
I(s) = G1K) (4.127)

The solution of equation (4.127) is obtained in time domain by taking inverse Laplace transform of
(4.127) for t > 0 as,

4
i(t) = Zte"“ (4.128)

Condition 3:
For this condition the value of y is imaginary. Hence, the values of , § are complex conjugates and they
are presented as,
a=-X+jY
B=-X—-jY
Equation (4.121) can be written as,
1) = L/CE—
+X+jV)(s+X—jY)
V/L
% Y
LY (s + X2) + Y2

I(s) =

I(s) = (4.129)
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The solution of equation (4.129) is obtained in time domain by taking inverse Laplace transform of
(4.129) for ¢t > 0 as,
%
i(t) = ﬁte"“ sinYt (4.130)

Example 4.11 A capacitor of C =2 uF with initial voltage across the capacitor as 20 V is connected to a
resistor of 100 Q through a switch at t = 0. Find the current through the circuit using Laplace
Transform for t > 0.

Solution:
R=100Q
C=2pF

v(0) = % =10V

The circuit is drawn as,

¢

Applying KVL in the above circuit, it is obtained as,

ic(t)dt
ir(OR +—f Cg) =0
Taking Laplace Transform of the above equation, it is written as,
(s) , Qo
—+—=0
I()R + s +Cs
1 Qo
I(s) (R+C—> = —a
Cs
oo QIO
(R+3)  R(s+50)
10
I(s) = - T
100 (s + 1oo><2><1o—6)

Taking inverse Laplace Transform of the above equation,
i(t) = —0.1e75000t 5
Example 4.12 For the circuit given below, the dc voltage of 100 V was applied to the circuit for a long

time when the switch was open. The switch is closed at t = 0. Find the current through the circuit
using Laplace Transform for t > 0.
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=0
X{ 0.5H

2Q
4Q

100V

Solution:

When the switch was open current was flowing through both the resistances and the inductance for a long
time. Current through inductor does not change suddenly. The current through the circuit during
that time (t < 0) is given by,

100
i(0Y) =i(07) =i(0) = e 16.67 A
When the switch is closed at t = 0, applying KVL in the circuit, it is obtained as,

. di(t)
l(t) X4 +0.5x T = 100u(t)

The above equation is represented in Laplace domain as,

I(s) x4+ 0.5x [sI(s) —i(0)] = g

100 +0.55i(0) _ 200 + si(0)
1) == GT0ss) = s@+s)

Using partial fraction, the above equation can be written as,

X Y
1= 5 +G575
200 + si(0) 200
- [W] B
[200 + si(O)] 200 — 8i(0) 200 —8x 16.67
= |—= = = = 833
s . -8 -8
Hence the value of I(s) is written as,
25 8.33
9= F-G59

Taking inverse Laplace Transform in the above equation, the current through the circuit is obtained as,
i(t)= 25-—8.33e 8 A
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UNIT SUMMARY

1. First order electric circuits are governed by first order differential equations whereas second
order circuits are governed by second order differential equations.

2. If the external independent source is not connected to these circuits, then they are known as
source free electric circuits and the response of these circuits are known as natural response.

3. Time constant is defined as the time required for the circuit to respond to a value of 36.8% of
the initial value.

4. For a source free R-L circuit, the energy stored in the inductor decays exponentially and it
dissipates across the resistor.

5. For a source free R-C circuit, the charge stored in the capacitor decays exponentially and it
dissipates across the resistor.

6. When the voltage or current source of a circuit is applied suddenly and if those sources can be
modelled as step function then the response of the circuit is known as step response.

7. Current through the inductor or voltage across the capacitor rises exponentially when an
independent voltage or current source is connected to the circuit.

8. Laplace Transform is an important mathematical tool to find out the transient response of electric

circuits. It is an integral transformation of a function from time domain to complex frequency
domain.
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EXERCISES

Multiple Choice Questions

1.
. 1/RC

5.

o 0o T

a0 TN

o0 TP AQO0 TP W

Time constant of RC circuit is

RC
R/C

.C/R

. Time constant of RL circuit is
. 1/RL

RL
R/L
L/R

. Time dependent voltage source, V= f(t) can be represented in Laplace domain as,

V/s
V(s)
Vs
0

. Inductance (L) in Laplace domain is represented as,

L
sL
L/s

. s%L

The final value of current through the circuit in a series R-L circuit with step input voltage of

V and initial current of lo through the inductor is given by

a.
b.
c.
d.

\
V/R

lo
V/L
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6

o O T

a
b
c
d

1
a
b
c
d

o oo w

e 0o o N

. The final value of voltage across C in a series R-C circuit with step input voltage of V and
initial voltage across C of Vo is given by
Veo
0
(00)
\"
. If the value of voltage source is 0 att < tp and V at t > tothen it can be expressed as
v(it)=0
v(t) = Vu(t + to)
v(t) = Vu(t - to)
v(t) =V

. In a RC circuit with R=1 Q@ and C=1 F, the time required for the capacitor voltage to reach
40% of its steady state value is

.0.51 sec
. 0.41 sec
. 0.61 sec
.0.71 sec

. In'a RL circuit with R=1 Q@ and L=1 H, the time required for the inductor current to reach 80%
of its steady state value is

.1.41 sec
. 1.51 sec
. 1.61 sec
.1.71 sec

0. Inverse of time constant of a circuit is known as
. resonance

. damping ratio

. frequency

. neper frequency
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Answers of Multiple-Choice Questions

1.

b 2.d 3.b 4.b 5.b

6.d 7.cC 8.a 9.c 10.b

Short Answer Questions:

. What is the meaning of time constant of the circuit?

Prove that at t= 5 of times of time constant of the circuit, the transient response of the circuit
is equal to its steady state value.

Define damping ratio.

What is the significance of the smaller time constant of the circuit?

What do you mean by first order electric circuit?

Long Answer Questions:

1.

2.

3.

4.

Prove that as t-oo, the energy absorbed by the resistor in a source free R-L circuit is equal
to the initial energy available in the charged inductor.

Prove that the current flowing through the capacitor becomes zero as t-eo in a parallel R-C
circuit excited by a step dc current.

Derive the expression for current through the resistor for the circuit mentioned in Fig. 4.19
using Laplace Transform.

Derive the expression for current through the circuit mentioned in Fig. 4.8 using Laplace
Transform.

Numerical Problems

1.

2.

When a series R-L circuit with R =100 ohm and L= 10 H is connected to a dc voltage source
at t = 0, the current through the circuit rises at the rate of 10A/sec. Find the applied voltage
and final energy stored in the inductor.

For the circuit shown below, initially the switch was in contact with position 1 for 20 sec. The
switch changes its contact from position from 1 to 2 at t =0. Determine the voltage across
the capacitor at t=0 and current through the circuit at t > 0.

1F
LN s 100
2 |
w(®

3. A constant voltage of 100 V is applied at t=0 to a series R-L-C circuit with R =10 ohm, L =2

H and C =100 pF. Find the current flowing through the circuit for t > 0.

4. A constant current of 1 A is applied at t =0 across a parallel combination of R-L circuit with

R =1o0ohmand L = 0.5 H. Find the current through the resistor and inductor for t > 0.
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5. For the circuit given below, the switch was closed for a long time. At t =0, the switch becomes
open then find the current through the circuit for t > 0 and voltage across the switch at the
time of opening.

1H

6. For the Fig. 4.19 consider / = 10 A, R=1 ohm, L =1 H and C =1 F. The switch becomes
open at t = 0. Find out the current through the resistor for t > 0 using Laplace Transform.

7. A step voltage of 100 V is applied at t = 0 to a series combination of R-C circuit where R=5
ohm, C =2 F. Initial voltage across the capacitor is zero. Find the current through the circuit
for t > 0 using Laplace Transform.

8. A step voltage of 10 V is applied at t = 0 to a series combination of R-C circuit where R=5
ohm, C =2 F. Initial charge on the capacitor is 4C. Find the current through the circuit for t >
0 using Laplace Transform.

PRACTICAL

1. Use LTspice to determine the current through a series R-L-C circuit with R=10 ohm, L= 2 H
and C=50 pF when connected to a step voltage input of 200V DC.

2. Use LTspice to determine the current through a series R-L circuit with R=100 ohm and L= 4
H with zero initial current through L at t < 0 when connected to a step voltage input of 10V
DC.

KNOW MORE

1. Find the current flowing through the capacitor for the circuit given in Example 4.3 considering
the initial voltage across the capacitor as 10 V using LTspice.
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e v[nl][ll) 10

tran 155
0. 1(C1)
0.

/___,___-——
0 //
1.0A //
11.5A
1-2.0A
2.
Os 2s 4s bs 8s 10s 12s 14s

Fig. 4.23: Current through capacitor for the circuit given in Example 4.3 using LTspice
Current through capacitor is initially 2 A and it decays as time progresses.
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5 Graph Theory

UNIT SPECIFICS

Through this unit we have discussed the following aspects:

Network topology

Tie-set matrix

Cut-set matrix

Two-port networks

Impedance and Admittance parameters
ABCD and h parameters

Relations between the two-port parameters

Interconnection of the electric networks

RATIONALE

An electric network consists of voltage sources, current sources and passive elements (R, L, C)
in series and parallel combinations. In order to analyse the network, many network theorems are applied
in the earlier chapters. In this chapter, such circuits are solved with the help of the graph theory concepts.
Hence, the networks are transformed into the oriented graph. This graph is useful for the formation of
the tie-set matrix and the cut-set matrix. These matrices are useful for solving such networks without
doing many calculations. Most of the networks have two-ports namely input port and output ports. Hence
these networks are denoted as two-port networks. The two-port network parameters are impedance
parameters, admittance parameters, ABCD or transmission parameters and hybrid parameters. These
two-port networks allow one to find the response of the network for the given input signal without
calculating or finding the internal voltages and currents of the network. Also, the relations between these
two-port networks are derived. . Many networks are interconnected in series, parallel or cascade mode
and discussed the method of finding the two-port parameters of such interconnected networks.
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PRE-REQUISITES
Basic graph theory

Network theorems

UNIT OUTCOMES

List of outcomes of this unit is as follows:

U5-01: Understand the basics of the network topology and its definitions

U5-02: Formulate the tie-set matrix and cut-set matrix for the network

U5-03: Comprehend the two-port network parameters namely Z, Y, ABCD and h parameters
U5-04: Realize the relations between the two-port parameters

U5-05: Analyse and Understand the interconnection of the networks

Unit-5 EXPECTED MAPPING WITH COURSE OUTCOMES

(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

Outcomes

CO-1 CO-2 CO-3 CO-4 CO-5
U5-01 1 1 = 2 -
U5-02 - - - 3 -
U5-03 1 1 = 3 -
U5-04 - - - 3 _
U5-05 - - - 2 2
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5.1 NETWORK GRAPHS

An electric network consists of voltage sources, current sources, resistors, inductors and capacitors. The
network graphs are the graphical representation of the electric networks. The nodes and lines are
considered for making the graph. A single point in which two or more electrical elements are
connected together is denoted as a node. The lines are used to represent the branch in a circuit. A
circuit branch is an electrical element or multiple electrical elements that are connected between
two nodes. These circuit branches are replaced by the lines in a network graph. A sample electric
network is shown in Fig.5.1 which consists of a voltage source and resistors R; to Rs. As per the
definition of the node and branch, the four nodes including reference node, 5 branches are shown
in Fig.5.2. Basic terminologies in the network graphs are listed with explanation.

Basic terminologies used in network graph:

Branch: A branch is a line segment that represents an electrical element or multiple electrical elements
connected between the nodes. In Fig. 5.2, the line segment named as 1 to 5 are the branches which
will not inform about the type of the electrical component. It provides information about a
component or an element present on that segment.

Node: A node is the end points of the line segment. Each line segment has two nodes. The line segment
1 shown in Fig.5.2 has two end points that is named as Nodes N1 and N2 respectively. It has totally
four nodes N1, N2, N3 and N4.

Ry R,

NV NV

§R3 §Rs

—_

@ o
L IO

4

Fig. 5.1: Sample electric circuit for explaining concept of network graph
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N1 1 N2 2 N3
| |
3
4 A 5
N4

Fig. 5.2: Network graph of the electric circuit shown in Fig.5.1

Degree of a node: The number of branches or line segments connected to that node is called the degree
of a node. In Fig. 5.2, the degree of the node for node N2 is 3, since the line segments 1, 2 and 3
are connected to it.

Tree: It is an interconnected and undirected sub graph of a network which covers all the nodes in a
network. There is no closed loop in the tree or it has an open set of branches. A graph may have
multiple numbers of trees and that is shown in Fig.5.3.

The connected subgraph is known as the tree of the graph if the subgraph has all nodes of the graph
without containing any loop.

Twigs: It is known as the branches in a tree. Or Tree branches are called Twigs. If the number of nodes
is nin a graph. The number of twigs in a tree is (n-1).

Links or Co-tree: It consists of the branches which are not in the tree of a network graph. In simple
way, by combining tree branches and tree links, all branches in a graph could be obtained. The
trees of the graph shown in Fig. 5.2 are shown in Fig.5.3, the corresponding tree link is shown in
Fig.5.4 in the same order. For example, the tree link of the Tree of Fig.5.3 (a) is presented in Fig.5.4
(a) in a dotted line.

Directed Graph or Oriented Graph: The branches of a graph are marked with the current direction.
Such a graph is called an oriented graph or the directed graph.

Loop: It is a closed path in a network graph. The loop of the graph is shown in Fig. 5.2. It consists of two
independent loops.
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N1 1 N2 N3
—— o
N1 N2 N3
4
3 5
4 5
N4 N4
(a) (b)
N1 N2 2 N3
NI B R 3
4
5 4
N4 N4
(c) (d)

Fig. 5.3: Trees of the network graph of the electric circuit shown in Fig.5.2

N3

NI 1 N2 2

N3

(a)

(b)



238 | Electric Circuits and Networks

z
-
¥
[\S]
(]
z
w

(c) (d)
Fig. 5.4: Tree links of the trees shown in Fig.5.3

Incidence Matrix using KCL: For the circuit shown in Fig.5.5, the number of nodes is 4 and the number
of branches is 6 that are numbered in closed brackets. Let us assume that the branch currents i,
ip2, Ip3, --...ipg flows in the corresponding branches. By applying the Kirchoff’s current law at
each node, the following equation 5.1 is obtained. This equation is represented as matrix form with
the branch currents and incidence matrix in equation (5.2).

b1 —ip2 —ipe = 0 —ipy +ipz +ipa = 0ipy — ip3 — ips =0 — ips + ips + ipe =0} (5.1)

1 -1 0 0 0 —-1-1 0 1 1 0 00 1 -

1 0 -1 00 0 0 -1 1 1 ][ipg ipg i3 ipa ips ipg ] =0 (5.2a)

OR

A, =0 (5.2b)
Where, A, is the complete incidence matrix of the graph and I, is known as the branch currents of the

graph.

1
(6) (2)
3

(5)

4

Fig. 5.5: Oriented graph presenting for the incidence matrix

Reduced Incidence Matrix: A reduced incidence matrix (A) is obtained by eliminating one row from
the actual incidence matrix. The eliminated row is corresponding to the reference node or datum
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node. In this example, node 4 is taken as a reference node. Hence the obtained reduced incidence
matrix is given below.
A=[1 -1 0 0 0 —-1-1 0 1 1 0 00 1

-1 0 -1 0]

Incidence Matrix using KVL: For the circuit shown in Fig.5.5, let us assume that the branch voltages
Vp1> Up2, Vps, -----Vpg are the voltage across the corresponding branches. These branch voltages
are presented as node voltages. vy = Upq — Vno Vpo = VUng — Un3zs Vpz = Upz — Unz; Upg =
Vn2 — Una’ Ups = Upa — Unz} Vpg = Ung — Upnq. Lhese are presented in matrix form in equation
(5.3).

[T -1 0 01 o0 -1 00 1 -1 00 1 0o -

10 0 -1 1-1 0 0 1]V Vn2 V3 Vsl = [Vs1 V2 Vi3 Vba Vps Ve |

(5.3a)

OR

[4a](va] = [vs] (5.3b)
Properties of the incidence matrix:

e The sum of the entries in any row is zero.
e The determinant of the incidence matrix of a closed loop is zero.
e The rank of the incidence matrix of an oriented graph is (n-1). Where n is the number of nodes
in a graph.
5.2 TIE SET ANALYSIS

A tie-set is a set of branches in a loop. Where the loop contains one link and the remaining are the tree
branches. The figure shown in Fig. 5.6 is the oriented graph of a circuit. The tree of this graph is
shown in Fig. 5.7. The possible fundamental loops of that tree is shown in Fig.5.8. In this graph,
there are three loops available. The Fundamental loop branches and links are [(1,2), (6)], [(1,3),
(4)] and [(2,3), (5)]. These set of branches form the three tie-sets.

ﬂ oo G ;
1 3

3)

) 5)

4 4

Fig. 5.6: Oriented graph of the circuit Fig. 5.7: Tree for the oriented graph shown in Fig.5.6
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4

(a) Fundamental loop1 (b) Fundamental loop2 (¢) Fundamental loop 3
Fig. 5.8: Fundamental loops of the oriented graph shown in Fig.5.5 and the tree of Fig.5.6
Tie-set matrix: A tie-set matrix (B) is a rectangular matrix whose rows are the links of the fundamental
loops and the columns are the branches in an oriented graph. Hence the tie-set matrix for the circuit
is shown in equation 5.5. It has three fundamental loops and six branches. The tie-set matrix
elements are filled with the equation (5.4). The tie-set matrix of the oriented graph of Fig. 5.5 is
shown in equation 5.5. The rows are the links of the fundamental loops 1, 2 and 3. Similarly the
columns are corresponding to its branches.
B;; ={+1 if the fundamental loop direction is same as the tree/link branch direction —

1 if the fundamental loop direction is opposite as the tree/
link branch direction 0 if the tree/
link branch direction is not in the fundamental loop direction (5.4)

B=[-1 -1 0 0 0 —-11 0 —-1-1 o 00 1 1 0 -
1 0] (5.5)

Tie-set matrix with KVL: By applying the KVL to the fundamental loops 1, the concern equation is
obtained in equation (5.6).

—Vp1 =V = Vpe =0 (5.6)

This concept is applied to other fundamental loops and the concern equations are presented in equation
(5.7) and (5.8) respectively.

Vo1 = Vo3 = Vpa =0 5.7
Vpz + V3 = Vps =0 (5.8)

These equations (5.6) to (5.8) are formed as matrix format that is shown in equation (5.9). Where V,
represents the branch voltages. This equation could be written as like in the equation (5.10).

[—1 -1 0 0 O —-11 0o —-1-1 0 00 1 1 0 —
1 0]V Via Via Vpa Vs Ve 1 = 0 (5.9

[B][Vy] =0 (5.10)

Tie-set matrix with KCL: Let assume that the fundamental loop currents are I, I;, and I;5 for the
fundamental loops shown in Fig. 5.7. The branch current of the branch (1) is denoted as (7).
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Based on this, the branch currents are represented in terms of the loop currents that are shown in
equation (5.11).
Ipy = —Ipg + 125 Iyp = =1y + I35 Ipz = —Ipp + 1135 Ipa = =125 Ips = —1I135 Ipe = — 111
(5.11)

This equation is presented in the matrix form as shown in equation (5.12) and this equation could be
written as like in the equation (5.13).
[1b11b21b31b41b51b6]=[_1 1 0-1 0 10 -1 10 -
1 00 0 —-1-1 0 0113 (5.12)

[1p] = [B]"[1,] (5.13)
5.3 CUT-SET ANALYSIS

A cut-set is a set of branches or the elements that are removed from the connected graph, the graph
divides into the two groups of elements. A cut-set is the minimum number of branches in a graph
such that the removal of these branches reduces the rank of the graph by one. In simple words, the
removal of these branches results in the unconnected two graphs.

The figure shown in Fig. 5.6 is the oriented graph of a circuit. The tree of this graph is shown in Fig. 5.7.
The links or the twigs of this graph are the branches (4), (5) and (6). The graph is shown with its
twigs and links in Fig.5.9. The removal of the branches (1), (4) and (6) make the unconnected
graph. Node 1 forms one graph and Node 2,3 and 4 forms another graph.

Fig. 5.9: Oriented graph of the circuit with its tree  Fig. 5.10: The resultant graph with the removal of
the branches and link branches (1), (4) and (6)
Fundamental cut-set: It is a cut-set that cuts the graph into two parts. It contains only one tree branch.
Hence the number of cut-sets in an oriented graph or a connected graph is equal to the number of
tree branches.

Finding the fundamental cut-set:

e The oriented graph of the circuit is drawn (See Fig.5.6). Find the tree of the graph (See
Fig.5.7).

e Focus on the tree branches one by one (See Fig.5.9).

e Check whether by removing this tree branch (Consider the tree branch (1) in Fig.5.9) from
the tree of the oriented graph separates the graph into two parts (Node 1 and Node 2, 3 & 4).
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o All the links from this tree branch connected node to other nodes of the graph are noted down.
These links [Link (4) and (6)] and the concerned tree branch [tree (1)] forms the fundamental
cut-set.

e Hence the fundamental cut-set of the oriented graph is

Fundamental cut-set 1: [1,4,6]
Fundamental cut-set 2: [2,5,6]
Fundamental cut-set 3: [3,4,5]

» The fundamental cut-set divides the graph into two parts.
> Each cut-set consists of one tree branch.
» The cut-set direction is the direction of the tree branch of that cut-set.
e Fundamental cut-sets of the graph shown in Fig.5.9 are mentioned above the concern graphs
are shown in Fig. 5.11. The cut-set direction is indicated in that figure.

1="" g) 2

ORI

4 4
(a) Fundamental cut-setl (b) Fundamental cut-set2
----- -
©) -
e 2
e (1) 2 . 3
R 3) o

@y

(c) Fundamental cut-set3
Fig. 5.11: Fundamental cut-sets and its direction of the oriented graph shown in Fig.5.9
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Cut-set matrix: A cut-set matrix (Qc) is a rectangular matrix whose rows are the cut-sets and the
columns are the branches in an oriented graph. Hence the cut-set matrix for the circuit is shown in
equation 5.14. It has three fundamental cut-sets and six branches. The cut-set matrix elements are
filled as follows.

éj ={+1 if the branchj in the cut — set i and thier orientation coincide
— 1 if the branch j in the cut
— set i and thier orientation oppose 0 if the branch j is not in the cut
—seti

The cut-set matrix of the oriented graph of Fig. 5.9 is shown in equation 5.14. The rows are the cut-sets.
Similarly, the columns are corresponding to its branches.
Qc=[1 0 0 1 0 10 1 0 o0 1 10 O 1 1 -
1 0] (5.14)
Cut-set matrix with KVL: The oriented graph is shown in Fig.5.9 and the corresponding tree is shown
in Fig.5.10. The tree branches are branches 1, 2 and 3. Similarly the links are branch 4, 5 and 6.
Let us assume that the tree branch voltages are V,4, V;, and V3. Similarly, the branch voltages are
denoted as V1, Vy,, Vi3, Vg, Vs and Vye. All the branch voltages are represented by the tree
branch voltages. Branches 1, 2 and 3 are the tree branches. Hence its voltages are presented in
equation (5.15).
Vo1 =Vea Vo2 = Vi Vs = Viz } (5.15)
Consider the branches 1, 3 and 4, that form the loop. By applying the KVL to that loop, the corresponding
equation is obtained in equation (5.16). From this, the branch voltage of branch 4 is represented
in terms of branch 1 and 3 and that is in (5.16).
Vbl + ng - Vb4 =0 (516)
Vba = Vp1 +Vps = Vi1 + V3 (5.17)
This concept is applied to other loops (2, 3, 5) and (1, 2, 6) and the concern equations are presented in
equation (5.18) and (5.19) respectively.
Vs = Viz = Vi3 (5.18)
Vb6 = th + sz (519)
These equations (5.15), (5.17) - (5.19) are formed as a matrix format that is shown in equation (5.20).
Where V}, and V; represents the branch voltages and tree branch voltages. This equation could be
written as like in the equation (5.21).

Vb1 1 0 O

Vb2 0 1 O Ve
Vi3 o0 o 1|
- v,
v 1o 1 Vtz (5.20)
Vb5 [0 1 - 1J t3
v, L1 1 o

v,] =[0f]v.] (5.21)
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Cut-set matrix with KCL: The branch current of the branch (1) is denoted as (I,1). Apply the KCL at
the nodes where the links are connected, the equation is presented in equation (5.22)
Ibl + Ib4 +Ib6 =0
—lyy = Ips — Ipe = 0} (5.22)
—Ipz —Ips +1ps =0
The equation (5.22) is modified as follows
Ibl + Ib4 + Ib6 =0
+Ib2 + Ib5 + Ib6 = 0}
+lpz + 1py — Ips =0
This equation is presented in the matrix form as shown in equation (5.23) and this equation could be
written as like in the equation (5.24).

Ip1
I
1 0 0 1 o0 1]~
o 1 0 o0 1 1 Ib3:0 (5.23)
o o0 1 1 -1 ol*
Ips
1,
[QC][Ib] =0 (5.24)

The summarization of the three matrices (incidence matrix, tie-set matrix and cut-set matrix) are
presented in Table 5.1.

Table 5.1: Summarization of incidence matrix, tie-set matrix and cut-set matrix

Matrix KVL KCL
Incidence matrix [4%][v,] =[] Agl, =0
Tie-set matrix [B][V,]1 =0 [I,] = [B]"[1,]
Cut-set matrix v,] = [QE] v, [Qcllls]l=0

5.4 NETWORK EQUILIBRIUM EQUATIONS

The network equilibrium equations are the set of equations which describe the state of the network at any
instant of time. It is represented with either current variables or voltage variables. These equations
are unique if the number of independent variables is equal to the number of independent equations.

Number of independent variables or equations
_(b—(m—=1) forloop method of analysis
B { (n —1) for node method of analysis

The network equations could be formed in any of the following methods.

e Based on Kirchhoff's voltage law, the loop equations are formed in which the current is the

independent variable.
e Based on Kirchhoff's current law, the node equations are formed in which the voltage is the
independent variable.



Electric Circuits and Networks | 245

Formation of Loop equations based on KVL: The branch k having an impedance Z and a voltage
source Vg in series and the current flowing in the branch is ix. The branch voltage (vy) is written
in equation (5.25). This equation should be in the matrix format in equation (5.26).

U = Zglg + Vox (5.25)
V] = [Z,][1,] + [Vs] (5.26)

Zg - Branch impedance

Ix - Branch current

Vs - Source voltage

Vg - Branch voltage

[Zg] - Branch impedance matrix

[Is]

[Vs]

- Branch current matrix which is column vector

- Source voltage matrix which is column vector

Vsk

+ ik Zy : _

f—— e

Fig. 5.12: A voltage source in series with an impedance

The equation (5.26) is rewritten based on as per the equation (5.10), that is written in equation (5.27).
The equation (5.27) is modified as the equation (5.28). The equation (5.28) is written by applying
the equation (5.13), which is presented in equation (5.29).

[B1[Vy] = [B1[Zp][I5] + [B][Vs] (5.27)
[B][V,] = 0 (as per equation (5.10))
[B1[Zp]l1] + [B][Vs] =0
[B1[Z)][1,] = —[B1[Vs] (5.28)
[B1[Z,] [B]"[1,] = —[BI][Vs] (5.29)
[Z][1,] = —[E] (5.30)
[E] = [B][Vs]

Where, [Z] is the loop impedance matrix which is written in equation (5.31).
[Z] = [B][Z,] [B]" (5.31)

Formation of Node equations based on KCL: The branch k having an admittance y, and a current
source igx in parallel and the voltage across the branch k is vg. The current (i) is written in
equation (5.32). This equation should be in the matrix format in equation (5.33).

I = YgVk — lsk (5.32)
U] = [V, V] = [Is] (5.33)

Yz - Branch admittance
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Iz - Branch current
I - Source current
Vg - Branch voltage
[Yg] - Branch admittance matrix
[/g] - Branch current matrix which is column vector
[Is] - Source current matrix which is column vector
| «— v —>|
iK 4 Yk _
—>— |

_@_

ISK

Fig. 5.13: A current source in parallel with an admittance
The equation (5.33) is rewritten based on as per the equation (5.2), that is written in equation (5.34). The
equation (5.34) is modified as the equation (5.35). The equation (5.35) is written by applying the
equation (5.3), which is presented in equation (5.36).

[Au1[15] = [Aal[Y (V] — [AdllIs] (5.34)
[A,][I,] = 0 (as per equation (5.2))
[A[Y,1Vo] = [AdllIs] = 0
[AI[Y1V] = [AallIs] (5.35)
[Aa][Y,][A]" (V] = [Ad]IIS] (5.36)
[Y][Va] = [F] (5.37)
[F] = [Aa]ls]

Where, [Y] is the node admittance matrix which is written in equation (5.38).
[Y] = [4.][Y,] [Aa]" (5.38)

5.5 ANALYSIS OF RESISTIVE NETWORK

The network consists of the passive elements and active sources like voltage sources and current sources.
Here, the network which consists of the resistors are only discussed in this chapter. The voltage
across the branch elements and the current through the branch elements are to be found using the
loop impedance matrix or node admittance matrix or in other words which is found by the
topological application of KVL and KCL concepts. These electrical networks are also solved with
network theorems and basic network solving methods like loop analysis and node analysis. The
response of the network could be verified using KVL and KCL.

Example 5.1: Determine the loop currents and branch currents using tie-set concepts for the circuit
shown in Fig. 5.14.
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Solutions: The oriented graph of the circuit shown in Fig.5.14 is presented in Fig.5.15. One of the trees
of the oriented graph is shown in Fig. 5.16. The loop current direction is shown in Fig.5.17. The
tie-set matrix of the circuit is shown in equation (5.39). The dimension of the tie-set matrix is
(number of loops X number of branches).

2v
D
NN

1Q

Fig. 5.14: Circuit for Example 5.1

1
)
¢
) ©6)
< 4
3 3
Fig. 5.15: Oriented graph of Example 5.1 and the Fig. 5.16: Tree of the oriented graph of Fig.5.15

circuit of Fig.5.14

Fig. 5.17: Tree of the oriented graph with loop current direction
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1 0 0 1 1 0
[B]=]0 1 0 -1 0 - 1] (5.39)
0 o0 1 0 -1 1
The KVL equation in matrix is presented in (5.40) that is developed based on the equation (5.29).
2
1 0 0 1 1 0 8
[B][Vs]=]10 1 0 -1 0 - 1] 0 (5.40)
0 0 1 0 -1 1
0
Lo

2
[B][Vs] = 0]

The branch impedance matrix [Z,] is presented in equation (5.41). The matrix [B][Z,][B]" is calculated
in equation (5.42).

1 0 0 0 0 O
01 0 0 0 O
0 01 0 0 O
[Z”]_o 0 0 2 0 O (5.41)
[0 0 0 0 2 0J
0 0 0 0 0 2
1 0 0 0 0 O
1 0 o0 1 1 oq7/® 1 00 00
[B1(Z,] = | 0 o -1 0 -1z 2 1 0 00
0o 0 1 o -1 1)/ 0 0 2 00
[0 0 0 0 2 0J
0 0 0 0 0 2
1 0 0 2 2 0]
[BllZ,]=]l0 1 o0 -2 0 =2
0o 0 1 0 -2 2
1 0 0
1 0 0 2 2 0 8(1)(1)
[B1IZ,][B]" =10 1 0O -2 0 —2]1 1 0
0 0 1 0o -2 2 N
[1 0 —1J
0 -1 1
5 —2 -2
[B1[Z,1[B]T =|-2 5 —2] (5.42)
-2 -2 5

Based on the equation (5.29), the values are substituted using (5.40), (5.41) and (5.42) and that are
presented in equation (5.43). The solution of the equation or the loop current value is I;; =
—0.85714, I;, = —0.5714A and ;5 = —0.5714.
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2 5 —2 —=21[Mu
—10]=|-2 5 -2 1L2 (543)
0 -2 =2 51U 3
The branch currents are calculated with the equation [I,,] = [B]T[I,].
i1 10 0
5 8 (1) (1) ~0.8571
1,1 =|°|= —0.5714/.
Iy 1 -1 0
. —0.5714
lg 1 0 -1
i Lo =1 1l
1] [—-0.8571
| |-0.5714
i3] _[-0.5714
iy|  |-0.2857
is| 1-0.2857
i) 1 o |

Example 5.2: (a) For the network shown in Fig. 5.18, draw the graph and tie-set schedule. Using the tie-
set matrix, obtain the loop equations and find the branch currents.

(b) For the network shown in Fig. 5.18, draw the graph and cut-set schedule. Using the cut-set
matrix, obtain the node equations and find the branch currents.

0.20Q
M
AN
m MY
0.5Q
; 1Q go.sg
9V

Fig. 5.18: Circuit for Example 5.2
Solutions: The problem could be solved by two methods namely tie-set matrix and cut-set matrix.
Tie-set Matrix method: The oriented graph of the circuit shown in Fig.5.18 is presented in Fig.5.19.
One of the trees of the oriented graph is shown in Fig. 5.20. The loop current direction is shown in

Fig.5.20. The tie-set matrix of the circuit is shown in equation (5.44). The dimension of the tie-
set matrix is (number of loops X number of branches).
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5) )

1) @) M~ i || 2 )7@)

Fig. 5.19: Oriented graph of the circuit for Example 5.2 Fig. 5.20 Tree of the circuit for Example 5.2

1 0 1. 0 0 -1
[Bl=]0 1 0 1 0 1 (5.44)
0 0 -1 -1 1 0
The branch impedance matrix is given below.
05 0 0 0 O 0

0 05 0 0 O 0
0 0 1 0 O 0
Zo]=10 0 0 1 0 o
0O 0 0 0 02 OJ
0O 0 0 0 O 1
The loop impedance matrix is calculated using [B][Z,][B]".
[B1[Z,][B]"
05 0 0 0 O 0
1 0 1 0 0 -1 00 065 10 00 00 00 10 1 0 0 -—-177
=10 1 0 1 0 1 00 0 1 0 0 O 1 0 1 O 1
0O 0 -1 -1 1 0[0 0 0 0 02 OJO 0o -1 -1 1 0
0O 0 0 0 O 1
2.5 -1 -1
[BIIZ,1[B]" =|-1 -25 -1
-1 -1 2.2

Calculate the matrix —[B][Vs].
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10 1 0 0 -1
—[BllVs]l==-]10 1 0 1 0 1
00 -1 -1 1 0

|

Now the loop current equations are [B][Z,][B]7[1,]

[7.] = [Z]7" = (=[BI[VsD)

i1 25 -1 1779 0.9890 0.7033 0.7692][9
[I] = [iz| =]-1 —25 -1 0] =10.7033 0.9890 0.7692](0
[ -1

L3 -1 2.2 0 0.7692 0.7692 1.1538110

I
| cooc oo g
I
—
ooV
e—

[Z][1,] = —[B][Vs]

i1 89
[I.] =|iz| =|6.33[|A
i3 6.92
The branch currents are calculated with the equation [I,] = [B]"[I,].
i 8.90
2o 1 0 0 —1)789 ?‘32
l=|7|={0 1 0 1 0 1] (633[= | "’ lA
A 0O 0 —1 -1 1 01 1692 ]
i 6.92
Lic] L2571

Cut-set Matrix method: The oriented graph of the circuit shown in Fig.5.18 is presented in Fig.5.21.
One of the trees of the oriented graph with a cut set and its directions are shown in Fig. 5.22. The node
potential (V3, Vi, V) of the cut-set is shown in Fig.5.22. The cut-set matrix of the circuit is shown in
equation (5.45). The dimension of the cut-set matrix is (number of cut-set nodes X number of branches).
-1 0 1. 0 1 O
[Qcl]=]0 -1 0 1 1 0
1 -1 0 0 0 1
From the cut-set matrix or by applying the KCL at the cut-set nodes, the equation (5.46) is obtained with
the branch currents. Also, the branch voltage (vq, v, V3, Vs, Vs & V) is found from the matrix which is
written in equation (5.47).

_ll+l3+15=0}

(5.45)

_lz+l4+15=0
il_i2+i6=0

(5.45a)
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(3)

1) (2)

Fig. 5.21: Oriented graph of the circuit for Example 5.2 Fig. 5.22: Tree of the circuit with cut-set and
its direction

vy =V —V3

vy =—=Vy—Vs

V3 = V3

oy (5.46)
Vg = V3 + V4

Vg = V6

The node current equations presented in (5.45a) are written in terms of the node voltages using (5.46).
The branch 1 consists of the voltage source, hence the branch current i; = % (Ve — V3 4+ 9). Similarly
other branch currents are substituted in equation (5.45). The following equations are obtained.
8V3 + 5V4 - 2V6 = 18
5V3 + 8V4 + 2V6 = 0
By solving these equations, the node potential is V; = 1.978V;V, = —0.5934V; V, = —2.57V. From
this, the branch currents are evaluated in the following ways.
. 1 \
11 ZE(V6 _V3 +9) = 89A
, 1
lz = E (_V4 - V6) = 6326A
, 1

1

1

1
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The values of the branch current remain the same from the tie-set method.

Note: The following equations (5.47) to (5.50) are useful for developing the tree or twigs/links or co-
trees from the oriented graph of the network consisting of N nodes and B branches.

Number of independent voltages =N-1 (5.47)

Number of tree-branches = N-1 (5.48)

No of Co-trees or links = L = B-(N-1) (5.49)

Total number of branches (B) = L+(N-1) (5.50)
5.6 TWO PORT NETWORKS

A network is classified as one port network or multi-port networks. One port network has only input
terminals. If a network has two sets of terminals such as input terminals and output terminals. It
is named as two port networks. The pictorial representation of these networks are shown in Fig.
5.23 (a) and 5.23(b). Example for one port network is shown in Fig. 5.24. It has the input source
as voltage source. In general, an electric network has two pairs of terminals that are named as
“input terminals” and “output terminals”. The electrical signal or electrical energy enters into the
terminals that are denoted as the input terminals. Similarly, the electrical signal or energy received
at the terminals which are named as the output terminals. The circuit is analysed based on the given
input and its response is observed at the output terminals in the form of voltages/ currents or any
electrical parameters. These output terminals are well connected to the input terminals of other
networks. In a two-port network shown in Fig. 5.23 (b), terminals “ab” are denoted as input
terminals and terminals “cd” are denoted as output terminals. Common representations of the input
terminals are 1 and 1 and the output terminals as 2 and 2’ that is shown in Fig. 5.25. The current
I1 and I» enter at terminals 1 and 2 respectively. Similarly, current I; and I leave at terminals 1°
and 2’ respectively. The voltage Vi and V» are the voltage across the input and output terminals
respectively. Some two-port networks and most of the electronic circuits have the additional
property that terminals 1’ and 2’ are in common.

a a 'y
—— ~—— °

One-port network Two-port network
— —— °
b b d

(@) (b)
Fig. 5.23: Block diagram of one-port and two-port networks
1 R, 2 R, 3
R,
v R,

®
4

Fig. 5.24: Sample network for one-port network (Node 1 and 4 are the input terminals)
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I 1 2 I

1 + + o < 2
Vi $ Two-port network ¢ V,

<« ——o —>h

Il 1' — 2

Fig. 5.25: Typical two-port network with input terminals 1 & 1’ and output terminals 2 & 2’

These two-port networks are described with four variables: input port / output port currents and
voltages. Among those variables, two variables are independent and the remaining two variables
are dependent variables. Since the network is linear, the equations are formed by a set of linear
equations that relates the port voltages and currents in the network. These relating parameters are
denoted as two-port parameters. These two-port parameters are classified as impedance
parameters, admittance parameters, hybrid parameters and transmission parameters based on the
combination of the input and output port parameters or variables. These parameters are extremely
helpful for analysing the electronic circuits and electrical power systems.

5.6.1 OPEN CIRCUIT IMPEDANCE PARAMETERS

The open circuit impedance parameters are called impedance parameters or Z parameters. Any electrical
networks are driven by either voltage sources or current sources which are represented as two-port
networks in Fig. 5.26 and Fig. 5.27 respectively. Vi, I and V, I are denoted as input port and
output port terminal voltages and terminal currents respectively. Both input and output port
voltages are linearly related with the input/output port currents sequentially by the equations (5.51)
and (5.52). These equations could be arranged in matrix form in equation (5.53).

Vi =211 +Zy30, (5.51)
Vo =211y + 2,1 (5.52)
Wi Vo] = 1211213 Z21 Z5, 11 I3 ] (5.53)
Zy =2 (5.54)

1 =0

Vi

2 =0

V2
Zy = 1_| (5.56)

1 =0

V2

2 =0

The Z parameters are the ratio of the voltages and currents which are obtained by making terminals open
circuited with either input ports or output ports and are presented in Fig. 5.26 and 5.27 respectively.
Based on that the admittance parameters are obtained which is shown in equations (5.63) to (5.66).
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I, —» <+ =0

Two-port network v,

Fig. 5.26: Two-port network with output terminals 2 & 2’ are to be opened (12=0)
Z11 = Open-circuit input impedance

Z,, = Open-circuit transfer impedance from port 2 (output port) to port 1 (input port)

L,=0—» <+—

A\ Two-port network Vv,

Fig. 5.27: Two-port network with input terminals 1 & 1’ are to be opened (1,=0)
Z1, = Open-circuit transfer impedance from port 1 (input port) to port 2 (output port)
Z,, = Open-circuit output impedance

Where Z;; and Z,, are also known as the driving point impedances and Z;, and Z,; are known as transfer

impedances. These parameters are obtained when the circuit is driven by voltage sources or current
sources.

When the two-port network is linear and there is no dependent sources, the transfer impedances remains
the same (Z1, = Z,4).
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Dependent sources

@ x V, - Voltage dependent voltage sources
@ﬁ I, - Current dependent voltage sources
@}/Vx - Voltage dependent current sources

C 61, - Current dependent current sources

Where V, and I, are the voltage across any circuit elements and current
flowing in any circuit elements in a particular circuit respectively.

o and J are the constant parameters.
B is presented in (V/A) unit
v is presented in (A/V) unit

Example 5.11: Determine the Z parameters pf the circuit shown in Fig.5.28.

10Q 200
NN\N——e
300
@ o

Fig. 5.28: Circuit for Example 5.11

Solutions: The circuit shown in Fig.5.56 is represented as a two-port network model as shown in
Fig.5.29. Solve this problem by applying the current entered into the input and output ports as

ZCro.
I, —» 10Q 200 +—0
AYAVAY, AAVAY,
v 300 V,
@ L

Fig. 5.29: Circuit of Example 5.11 rearranged as two-port network pattern



Electric Circuits and Networks | 257

Step1: Setting the current at the output port as zero or the output port is open circuited.

With this concept, the circuit is modified and presented in Fig.5.30. By observing the circuit, it is
understood that no current flows in the 20€Q2 resistor and the input current I; flows through 10Q and 30
resistors only.

L —» 10Q 200 <4——1,=0
N\ N 3|—
Vv, 300 v,
° o

Fig. 5.30: Circuit of Example 5.11 when the output port is open circuited
Apply the loop analysis concepts to the first loop, V; — 10I; — 301, = 0; ? = 400

1

Itisequal to Z,; = ‘1/—1 = 400
1

The voltage across the output terminals is V, which is equal to the voltage across 30Q2. Since the current
flows in the 20Q2 resistor is zero.

Hence, V, = 301;,. From this, Z,; = ‘I/—z = 3042 is obtained.
1

Step2: Setting the current at the input port as zero or the input port is open circuited.

With this concept, the circuit is modified and presented in Fig.5.31. By observing the circuit, it is
understood that no current flows in the 10Q resistor and the output current I> flows through 20€ and 30Q
resistors only.

;=0 100 200 <+—

—>
g*_’\/\/\, NV

v 300 v,

Fig. 5.31: Circuit of Example 5.11 when the input port is open circuited

Apply the loop analysis concepts to the second loop, V, — 201, — 301, = 0; % = 50/

2

Itis equal to Z,, = ‘I/—z = 50/
2

The voltage across the input terminals is V; which is equal to the voltage across 30Q2. Since the current
flows in the 10Q resistor is zero.
Hence, V; = 301,. From this, Z;, = ‘1/—1 = 3042 is obtained.
2
Zy, Z 12] 40 30

Z parameters of the given circuit is [221 Zyy =130 =0
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Example 5.12: Determine the Z parameters of the circuit shown in Fig.5.32.

10Q 20Q 5Q

—/\/\/\ MV NN—e

§3OQ §ISQ

® ®
Fig. 5.32: Circuit for Example 5.12

Solutions: The circuit shown in Fig.5.32 is represented as two-port network model as shown in Fig.5.33.
Solve this problem by applying the current entered into the input and output ports as zero.

I, —p 10Q 20Q 5Q <+—1],
: — M\, AN AN\—e

\ §3OQ §ISQ Vv,

® !
Fig. 5.33: Circuit of Example 5.12 rearranged as two-port network pattern

Step1: Setting the current at the output port as zero or the output port is open circuited.

With this concept, the circuit is modified and presented in Fig.5.34. By observing the circuit, it is
understood that there is no current flows in the 5Q resistor and the input current I; flows through
10Q and then divided to the parallel circuits. Hence the circuit is redrawn as shown in Fig.5.35.
Let us assume that the two loops’ currents i, and i, are flowing as shown in the figure. By applying
the loop analysis concept, the KVL equations are formed and presented as equation (5.58) and
(5.59).

=0
L, — 10Q 20Q 50 <«
1 —/\/\\ M M 2

\ §SOQ ngQ Vv,

Fig. 5.34: Circuit of Example 5.12 when the output port is open circuited
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I, —» 10Q 200

— N\ N n
Vi :1_1> gsog i) 15Q V,

Fig. 5.35: Modified circuit of Example 5.12 when the output port is open circuited

vy —10i; —30(i; —i;) =0 (5.58)
—30(i, — i) — 20i, — 15i, =0 (5.59)
i, = I is as per circuit diagram shown in Fig. 5.35.

Based on equation (5.59), i, = % i; which is substituted in equation (5.58).
Hence, V; = 26.15i;.
iy = I; is as per circuit diagram shown in Fig. 5.35. V; = 26.151;.

L = 26.150

1

Itisequal to Z,; = ‘1/—1 = 26.150
1

The voltage across the output terminals is V, which is equal to the voltage across 15Q. Since the current
flows in the 5Q resistor is zero.

Hel’lce, V2 = 15’.2

. 30\ . 90 . 90
Vz = 1512 =15 (E) 1= Ell = Ell
From this, Z,; = ‘I/—z = % = 6.92(2 is obtained.
1

Step2: Setting the current at the input port as zero or the input port is open circuited.

With this concept, the circuit is modified and presented in Fig.5.36. By observing the circuit, it is
understood that there are no current flows in the 10€ resistor and the input current I flows through 5Q
and then divided to the parallel circuits. Hence the circuit is redrawn as shown in Fig.5.37. Let us assume
that the two loops’ currents i; and i, are flowing as shown in the figure. By applying the mesh analysis
concept, the KVL equations are formed and presented as equations (5.60) and (5.61).
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Il=0

10Q 200 5Q <+—1
E AT AN —e
+

v, gsog §159 v,

® ®
Fig. 5.36: Circuit of Example 5.12 when the input port is open circuited

SQ <+

%Cé Q@

Fig. 5.37: Modified circuit of Example 5.12 when the output port is open circuited

V, —5i, —15(i, —i3) =0 (5.60)
Based on equation (5.61), iz = g i, which is substituted in equation (5.60).

Hence, V, = 16.53i,.
iy = I, is as per circuit diagram shown in Fig. 5.37. V, = 16.531,.

Vs
— =16.530
2

Itis equal to Z,, = ‘I/—z = 16.5312
2

The voltage across the input terminals is V; which is equal to the voltage across 30Q2. Since the current
flows in the 10Q resistor is zero.
Hence, V; = 30i5.
15 90 . 90
V1—3013—30*(65> El4= Elz

From this, Z;, = ‘1/—1 =2 = 6.920 is obtained.
2

13
. . [Z4 le] _[26.15 6.92
Z parameters of the given circuit is [ Zyi Zps) ~ 16.92 16.53
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Example 5.13: Determine the Z parameters of the circuit shown in Fig.5.38. Let us assume that the
source frequency is 50Hz.

1mF
V4
@ AN @

5Q 10Q

® ®
Fig. 5.38: Circuit for Example 5.13

Solutions: The circuit shown in Fig.5.38 is represented as two-port network model as shown in

Fig.5.39 with all impedances in Q. X, = (L) = (m

cw
the current entered into the input and current in the output port as zero.

) =3.18Q. Solve this problem by applying

L, — -{3}.189 <1
L AN ®
@ @

Fig. 5.39: Circuit of Example 5.13 rearranged as two-port network pattern

Step1: Setting the current at the output port as zero or the output port is open circuited.

With this concept, the circuit is modified and presented in Fig.5.40. By observing the circuit, the input
current I; divides to 5Q and (-j3.18Q)/10Q. In order to realize this, the circuit is redrawn as shown
in Fig.5.41. Now it is understood that the current flowing in (-j3.18)Q and 10Q at the output side
remain the same. In order to find the current through these branches are found by the current
division technique.

5 5 5
_ 2 \_ = I
318007 100 = Iy * (5 — 318+ 10) b (15 —j3.18> (15.334 - 11.960> 1
=0.326211.96°1,
Voltage across the 10Q resistor is V,, which is equal to I}, * 10. Hence, V, = 3.26£11.96°I;

V, 0
— = 3.26£11.96" 2
1
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It is equal to Z,; = 2 = 3.26211.96°Q

I
I ) -f?}.lSQ <+—1,=0
L AN o
_l_
Vi 5Q 10Q V2
@ @

Fig. 5.40: Circuit of Example 5.13 when the output port is open circuited

In order to find Z; 4, the circuit is simplified as shown in Fig.5.42. The impedances (-j3.18) and 10 are in
series and the obtained result is (10-j3.18)€, then it is parallel to 5Q resistor.

10-j3.18)(5 5%10.492—17.64°
(10-/318)(5) = 3.42,-5.68°Q.
15—3.18 15.332-11.96°

Hence, (10-j3.18 ||5) =

From this, Z;; = ‘1/—1 = 3.42,—5.68°1 is obtained.
1

I -j3.18Q2
—r I
I\
\Z 5Q2 100 V2
@
Fig. 5.41: Modified circuit of Example 5.13 when the output port is open circuited
L —»
Vi 326/-568Q

Fig. 5.42: Modified circuit of Example 5.13 for calculating Z;; when the output port is open circuited

Step2: Setting the current at the input port as zero or the input port is open circuited.
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With this concept, the circuit is modified and presented in Fig.5.43. By observing the circuit, the input
current I, divides to 10Q and (-j3.18)€Q2/5Q. In order to realize this, the circuit is redrawn as shown
in Fig.5.44. Now it is understood that the current flowing in (-j3.18)Q2 and 5 at the input side
remain the same. In order to find the current through these branches are found by the current

division technique.

I I ( 10 ) I ( 10 ) ( 10 )1
— $ | —m—m8M | = * =
3.180 o7 50 275 —j3.18+ 10 27\15 —j3.18 15.332 — 11.96°/ 2
=0.6522£11.96°1,

Voltage across the 5Q resistor is V;, which is equal to Is,, * 5. Hence, V; = 3.26£11.96°1,

Vy 0
— = 3.26£11.96" (2

2
Itis equal to Z;, = 2 = 3.26211.96°0

I

® AN @

_l.

vV, 50 100 v,
@ L

Fig. 5.42: Circuit of Example 5.13 when the input port is open circuited
In order to find Z,,, the circuit is simplified as shown in Fig.5.42. The impedances (-j3.18) and 5 are in
series and the obtained result is (5-j3.18)Q, then it is parallel to 10Q resistor.

. 5%(5—;3.18 5%5.92,£—32.45°
Hence, (5-3.18) |[(5) = 1(0_]_’3_18) = SR 2.854-14.81°0

From this, Z,, = ‘I/—z = 2.854—14.81%0 is obtained.
2

-j3.18Q <+—1,
¢ -
AN
_|_
vi 3¢ 100 V2
L 4

Fig. 5.43: Modified circuit of Example 5.13 when the input port is open circuited
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2.85/-1481°Q V,

Fig. 5.44: Modified circuit of Example 5.13 for calculating Z;; when the input port is open circuited

Zi1 le] 3.42,—5.68° 3.26411.96"]

Zy1 Zy) 1326211960 2.85,-14.81°

5.6.2 SHORT CIRCUIT ADMITTANCE PARAMETERS

The short circuit admittance parameters are called as admittance parameters or Y parameters that are to
be obtained for the two-port network shown in Fig.5.45. Both input and output port currents are
linearly related with the input/output port voltages sequentially by the equations (5.60) and (5.61).
These equations could be arranged in matrix form in equation (5.62).

Z parameters of the given circuit is [

Il IZ
—p <
———eo—— —eo——©
+ +
' Network v,
—o— L eo————®

Fig. 5.45: Two-port network with input and output terminals

L =YV + YV, (5.60)
12 = Y21V1 + Y22V2 (561)
11] [Yn Y12] [V1]
= 5.62
] =le vl (>.62)
I
Vi, = AN (5.63)
Vip = 2| (5.64)
2 y=0
Yy, =2 (5.65)
1 y,=0
Y,, =2 (5.66)

V2 'y=0



Electric Circuits and Networks | 265

The Y parameters are the ratio of the currents and voltages which are obtained by short circuiting the
input ports or output ports which is presented as shown in Fig. 5.46 and 5.47. Based on that the
admittance parameters are obtained which are shown in equations (5.63) to (5.66).

L, —» <+ =0

Vi Two-port network v,

Fig. 5.46: Two-port network with output terminals 2 & 2’ are to be opened (I,=0)
Y31 = Short-circuit input admittance

Y,1 = Short-circuit transfer admittance from port 2 (output port) to port 1 (input port)

Il =) —» <+— IZ

\/ Two-port network V,

Fig. 5.47: Two-port network with input terminals 1 & 1’ are to be opened (1,=0)
Y1, = Short-circuit transfer admittance from port 1 (input port) to port 2 (output port)
Y,, = Short-circuit output admittance

Where Y;; and Y,, are also known as the driving point admittances and Y;, and Y, are known as transfer

admittances. These parameters are obtained when the circuit is driven by voltage sources or current
sources.

When the two-port network is linear and there are no dependent sources, the transfer admittances remain
the same (Y, = Y51).

Example 5.14: Determine the Y parameters of the circuit shown in Fig.5.28.

Solutions: The circuit shown in Fig.5.28 is represented as a two-port network model as shown in
Fig.5.48. Solve this problem by short circuiting both the input and output ports sequentially.
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I, —» 10Q 20Q +—0
NN NN
\Y) 30Q Vs
@ @

Fig. 5.48: Circuit of Example 5.14 rearranged as two-port network pattern
Step1: Setting the voltage at the output port as zero or the output port is short circuited.

With this concept, the circuit is modified and presented in Fig.5.48. In order to find the Y parameters,
the circuit is solved with node analysis with the node potential V4, the concern circuit is drawn in

Fig.5.49.
I, —» 10Q v, 200 g— I,
\Y 30Q2 —
L
Fig. 5.49: Circuit of Example 5.14 when the output port is short circuited
Apply the node analysis concepts at Vanode, I; + I, = I3 (5.67)
. L Vi=Va |, 0-V4 _ Va
The equation (5.67) is written as, o T 50 = 30
Vi_Va Vu + Va
10 30 20 10
Hence, V, = 0.546V;.
Whereas the current flowing in 10Q resistor is I; = Vll_OVA = V1—01.1(3)46V1 = 0.0454V,
With this, ¥;; = i = 0.0454 mho
1
The current flowing in 20Q resistor is I, = O;ZA = % = —0.0273V,

With this, ¥, = i = —0.0273 mho

1
Step2: Setting the voltage at the input port as zero or the input port is short circuited.
With this concept, the circuit is modified and presented in Fig.5.50. In order to find the Y

parameters, the circuit is solved with node analysis with the node potential Vg, the concern circuit is
drawn in Fig.5.50.
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I -1
1, ’\1/(6)\, Vg 20Q 2

V;=0 1 l 30Q2 V,

Fig. 5.50: Circuit of Example 5.14 when the input port is short circuited

Apply the node analysis concepts at Vg node, I; +1, =1, (5.68)

0=Vs | VaVs _ Vs
10 20 30

The equation (5.68) is written as,
Vo Vg Vg Vg
20 30 20 10
Hence, Vz = 0.272V,.
V,—Vg _ V,—0.272V,

Whereas the current flowing in 20Q resistor is I, = o = s = 0.0364V,

With this, Y, = 2 = 0.0364 mho
2
The current flowing in 10Q resistor is I; = O;ZB = % = —0.0272V,

With this, ¥y, = i = —0.0272 mho

1

Y1 Y1z]_ 0.0454 —0.0272
Y1 Yy —0.0272 0.0364

(Hint: Find the inverse of the Y parameter matrix, Z parameter matrix will be obtained.)

Y parameters of the given circuit is [

Example 5.15: Determine the Y parameters of the circuit shown in Fig.5.32.

Solutions: The circuit shown in Fig.5.60 is represented as a two-port network model as shown in
Fig.5.51. Solve this problem by short circuiting the input and output ports sequentially.

I, —p 10Q 20Q 5Q <+—1],
: — M\, AN AN\—e

\A §3OQ §ISQ Vv,

Fig. 5.51: Circuit of Example 5.15 rearranged as two-port network pattern

Step1: Setting the voltage at the output port as zero or the output port is short circuited.

With this concept, the circuit is modified and presented in Fig.5.52. In order to find the admittance
parameters, the circuit is solved by the node analysis. For analysis, the branch current and node potentials
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are identified and marked in Fig.5.53. By applying KCL at nodes V, and Vj, the linear equations are
formed in (5.69) and (5.70) respectively.

I, —» 10Q 200 ,S/S\l/\, <+,

— N M

v, §3OQ §159 V,=0

Fig. 5.52: Circuit of Example 5.15 when the output port is short circuited

: —A\\—e—

V2=0

Fig. 5.53: Modified circuit of Example 5.15 when the output port is short circuited with the branch
current direction

11 = 13 + 14 (569)
L+1,=1I (5.70)
These equations are written as follows.

Vi=Va _ Va—0 n Va-Vg (5.71)
10 30 20

Va—Vg , 0-Vp _ Vg (5.72)
20 5 15 '

Va_ 1,1 1
20 (20+15+5)VB

By substituting (5.73) in equation (5.71), % = (% + % + 1—10) V,— ZV—‘;
14 1 1 1 Vg
0= (% + 20 + E) (6.33V3) — 20
V, = 11.105Vg
By the Fig. (5.82), the current I; and I, are written as follows.
v, -V,
10

11=
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1
V1 - VA — V1 - (633‘/3) — Vl - 633 (11.105) Vl

h=—15 10 10

= 0.043V,

Y —11—0043

Step2: Setting the voltage at the input port as zero or the input port is short circuited.
With this concept, the circuit is modified and presented in Fig.5.54. In order to find the admittance
parameters, the circuit is solved by the node analysis. For analysis, the branch current and node potentials

are identified and marked in Fig.5.55. By applying KCL at nodes V. and V), the linear equations are
formed in (5.73) and (5.74) respectively.

I,—» 10Q 20Q 5Q <+—
— A AN AMN—e

Vi §3OQ glsﬂ v,

Fig. 5.54: Circuit of Example 5.15 when the input port is short circuited

L—» 10Q v, 20Q Vv, 5Q <+
@
17>
V=0 300 15Q \'A
16 18
@

Fig. 5.55: Modified circuit of Example 5.15 when the input port is short circuited with the branch
current direction

11 = 16 + 17 (574)
L+1,=Ig (5.74a)

These equations are written as follows.
0-Ve V=0 | Vo—Vp

0 30 T 20 (5.75)
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Ve=Vp , Va=Vp _ Vp

— 42 —=== (5.76)
20 5 15
o _ L, 1 1
20- G TtV
By substituting (5.77) in equation (5.76), % + % = ‘1/—1;
Vz_(1+1+1>v 1V
5 \15 5 20/ " 20°°¢
By the Fig. (5.84), the current I; and I, are written as follows.
0 - VC
I, =
710
Va=Vp
L=2_"2
2 5
_ 0—(—)V;
Hence, I, = =Y = &% _ _ 0179y,
10 10

I
Yy, = 71 = —0.0179 mho
2

1
Vo —Vp Vo, —(B67V) Va—367(G V2 1,(0.339)
5 5 - 5 - 5

I
Yy, = V—Z = 0.0678 mho
2

Yi1 le]z 0.043 -0.018
Y1 Yo —-0.018 0.678

Example 5.16: Determine the Y parameters of the circuit shown in Fig.5.38. Let us assume that the
source frequency is 50Hz.

Y parameters of the given circuit is [

Solutions: The circuit shown in Fig.5.38 is represented as two-port network model as shown in Fig.5.39

with all impedances in Q. X, = L) = (————) =3.18Q. Solve this problem by applying
cw 0.001*2x*50

the current entered into the input and output ports as zero.

Step1: Setting the voltage at the output port as zero or the output port is short circuited.

With this concept, the circuit is modified and presented in Fig.5.56. By observing the circuit, the output
port short circuited which makes the 10€ resistor in the circuit absurd or meaningless. Hence the
circuit is modified as shown in Fig.5.57. In order to find the Y parameters, it is assumed that the
current I; is divided into current I3 and I,. By applying current division technique, these currents
are found as follows.

5 5
= = = 0.843232.45°]
le=h*s—395 = *593,-3245 1
—j318  3.182-90°

13=11

- — 0.5362 — 57.55°]
*5j318 1 *So3s-32450 _ 00364 1
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By observing this circuit, it is understood that the current 1, is opposing the current I,. Hence I, = —I,
Therefore,

I, = —0.843232.45°, = 0.8432 — 147.55°I;
Voltage across the 5Q resistor is V;, which is equal to I3 * 5. Hence, V; = 2.684 — 57.55°I;

I _ 1 _ 0
A 037345755
V, 2.684£—5755
Itis equal to Yy, = ‘I/—i = 0.3734£57.55%
1

V, = 2.684 — 57.55°I, = 2.684 — 57.55° ( )12 =3.179290°1,

0.8432£ —147.55°

_12 _ 0
Y51 =7 = 0.3142 — 90%v
1

I, | -{3;.189 | L
. 1<
..... ’14
\'2 <+> 59; V,=
_ Y
L

Fig. 5.57: Modified circuit of Example 5.16 when the output port is short circuited
Step2: Setting the voltage at the input port as zero or the input port is short circuited.

With this concept, the circuit is modified and presented in Fig.5.58. By observing the circuit, the input
port short circuited which makes the 5Q resistor in the circuit absurd or meaningless. Hence the
circuit is modified as shown in Fig.5.59. In order to find the Y parameters, it is assumed that the
current I, is divided into current I5 and /. By applying current division technique, these currents
are found as follows.

Ig=1 10 I 10 0.953217.64°1
= * = * = U. .
€7 72710—43.18 " 2 10.492—17.64° z
—j3.18 3.182-90°

Iy = = = 0.3032 — 72.36°
5= 12%70-,3.18 27 10.492—-17.649 2
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By observing this circuit, it is understood that the current I is opposing the current ;. Hence I; = —I,
Therefore,

I, = —0.953217.64°I, = 0.9532 — 162.36 °I,
Voltage across the 10Q resistor is V,, which is equal to I * 10. Hence, V, = 3.032 — 72.36°1,

1 1
e - -033272.36"
V, 3.0324-72.36
It is equal to Y,, = ‘1/_2 =0.33272.36%
2

V, = 3.032 — 72.36°I, = 3.032 — 72.36° ( )11 =3.179290°],

0.9532 —162.36°

_11 _ 0
Y1, =7 = 0.3142 — 90%v
2

I—p -iif?.ISQ <1,
[ AN L

V=0 30 100 <+> vV
[ : L 4

Fig. 5.58: Circuit of Example 5.16 when the output port is short circuited

— -{3{.18(2 <1,
L 16 o
< .......
I ‘
V= ‘
! I ¢ 10Q V2

v

® °

Fig. 5.59: Modified circuit of Example 5.16 when the output port is short circuited

Y1 le] 0.373457.55° 0.3144—90°]

Y21 Y22l 103142 -90° 03327236
By observing the Z and Y parameters, it is noticed that Z;, = Z,; and ¥;, = Y,,. Hence the given circuits

are linear.

5.6.3 TRANSMISSION PARAMETERS

Both the input port and output port have voltages and currents, any voltages and currents are considered
as independent variables. Based on those, many parameters could be obtained. In transmission
parameters, voltage and current at the input port are considered as dependent variables. These are
expressed in terms of output port voltage and output port current linearly by the equations (5.79)

Y parameters of the given circuit is [
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and (5.80). These equations could be arranged in matrix form in equation (5.81). The equivalent
two port networks of these parameters are presented as shown in Fig. 5.60. By looking at this
figure, the output port current is going away from the circuit. In electric power transmission, the
input side is considered as the power generation and the output side is considered as consumers.
Hence the current at the output port supplies to the consumers. Hence it is represented as (-1,),
since it is opposite of the earlier assumptions. These equations (5.79) and (5.80) provide
information about how an electric network transmits the voltages and currents from source to the
consumer end. Hence it is named as transmission parameter. These parameters are very useful in
power transmission networks and communication networks. These parameters are also called
ABCD parameters or T parameters.

vl] _[A B [ v, ]
[11 =z oll-1 (5.81)
A= §| (5.82)
2 1,=0
B= —‘1’—1 (5.83)
2 v,=0
c=21 (5.84)
V2 '1,=0
D=-1 (5.85)
2 Ty,=0

A = Open-circuit voltage ratio
B = Negative short-circuit transfer impedance
C = Open-circuit transfer admittance

D = Negative short-circuit current ratio

I, —» —> (-

Vi Two-port network Vv,

Fig. 5.60: A two-port network model for the transmission parameters

These parameters are calculated like Z and Y parameters based on the conditions described. For the
reciprocal circuits, Z;, = Z,, and Y;, = Y,;. The ABCD parameters of the reciprocal circuits are
AD — BC =1).
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Example 5.17: Determine the ABCD parameters of the circuit shown in Fig.5.28.

Solutions: The circuit shown in Fig.5.28 is represented as two-port network model as shown in Fig.5.61.
Solve this problem by short circuit and open circuit the output port sequentially.

I, —» 10Q 20Q —p(-L)
NN NN
V; 30Q2 V,
® ®

Fig. 5.61: Circuit of Example 5.17 rearranged as two-port network pattern
Step1: Setting the voltage at the output port as zero or the output port is short circuited.

With this concept, the circuit is modified and presented in Fig.5.62. In order to find the two-port
parameters, the circuit is solved with node analysis with the node potential V4, the concern circuit is
drawn in Fig.5.63.

L, —» 10Q 20Q — 1,
NN NN
Vi 300 V=0
L

Fig. 5.62: Circuit of Example 5.17 when the output port is short circuited
L —» 10Q v,

T

Fig. 5.63: Circuit of Example 5.17 when the output port is short circuited

Apply the node analysis concepts at Vanode, I; + I, =I5 (5.86)
. . . Vi=Va |, 0-V4 _ Va
The equation (5.67) is written as, o T 50 = 30

Vi Vy Y, 4 Va
10 30 20 10
Hence, V, = 0.546V;.

Whereas the current flowing in 10Q resistor is I; = Vll_OVA = V1—01.1(3)46V1 = 0.0454V;
The current flowing in 20Q resistor is I, = ——4 = 222 — _0 0273V,

20 20
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With this, B = —‘1’—1 = 36.630

2

I, = 0.0454V, = 0.0454 (— )12 = —1.663I,

0.0273

Hence D = —j—l = 1.663
2

Step2: Setting the current at the output port as zero or the output port is open circuited.

With this concept, the circuit is modified and presented in Fig.5.64. This section is similar to find
the z parameters (Ref. section 5.5.1, Fig.5.30). By observing the circuit, it is understood that there is no
current flows in the 20Q resistor and the input current I; flows through 10Q and 30Q2 resistors only.

L, —> 10Q 200 €——1=0
NN aAVAY 3|_
Vv, 300 v,
o °o

Fig. 5.64: Circuit of Example 5.17 when the output port is open circuited
Apply the loop analysis concepts to the first loop, V; — 101, — 30, = 0; V; = 40[;
The voltage across the output terminals is V, which is equal to the voltage across 30Q2. Since the current
flows in the 20Q resistor is zero.

Hence, V, = 30/,. From this, 4 = % = g = 1.33 is obtained.

2

c=h_ ! = 0.033
TV, 30
1.333 36.63

. ... [A B]_
ABCD parameters of the given circuit is C D] = [0. 033 1.663

Verify that the circuit is reciprocal or not:

For reciprocal circuit, AD — BC =1

AD — BC = (1.333)(1.663) — (36.63)(0.033) =1

Hence the given circuit is reciprocal.

Example 5.18: Determine the T parameters pf the circuit shown in Fig.5.32.

Solutions: Solve this problem by short circuiting the output port and open circuiting the output port
sequentially.
Step1: Setting the voltage at the output port as zero or the output port is short circuited.
With this concept, the circuit is modified and presented in Fig.5.52. In order to find the admittance
parameters, the circuit is solved by the node analysis. For analysis, the branch current and node potentials

are identified and marked in Fig.5.53. By applying KCL at nodes V, and Vj, the linear equations are
formed in (5.69) and (5.70) respectively. The values obtained by that calculation are given as follows.

12 = _0018V1
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11 = 004’3V1

Vi
B = —— = 55.550
1

D= L, 0043V, 2388
- L, -o0.018y;
Step2: Setting the voltage at the output port as zero or the output port is short circuited.

This concept is similar to the problem 5.14 (Ref. Section 5.5.1).
Based on equation (5.59), i, = % i; which is substituted in equation (5.58).

Hence, V; = 26.15i;.
iy = I; is as per circuit diagram shown in Fig. 5.63. V; = 26.151;.

Vi
— =26.150
1

The voltage across the output terminals is V, which is equal to the voltage across 15Q. Since the current
flows in the 5Q resistor is zero.

Hel’lce, V2 = 15’.2

. 30\ . 90 . 90
V, = 15i, = 15 * (£> h=3h= Ell
The T parameters or ABCD parameters,
Vi 2615
_Vz ——(90/13)11 =3.777
L 13
C—E—%—0.1444

[A B|=[3777 55.55
cC D

T or ABCD parameters of the given circuit is 0144 2 388

Verify that the circuit is reciprocal or not:

For reciprocal circuit, AD — BC =1

AD — BC = (3.777)(2.388) — (55.55)(0.144) = 1
Hence the given circuit is reciprocal.

Example 5.19: Determine the ABCD parameters pf the circuit shown in Fig.5.38. Let us assume that
the source frequency is S0Hz.

Solutions: The circuit shown in Fig.5.38 is represented as two-port network model as shown in Fig.5.39

with all impedances in Q. X, = (L) = (m) =3.18Q. Solve this problem by making the

cw
output ports as open and short circuited.
Step1: Setting the voltage at the output port as zero or the output port is short circuited.

With this concept, the circuit is modified and presented in Fig.5.57. By observing the circuit, the output
port short circuited which makes the 10Q resistor in the circuit absurd or meaningless. Hence the
circuit is modified as shown in Fig.5.57. In order to find the ABCD parameters, it is assumed that
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the current I; is divided into current I3 and I,. By applying current division technique, these
currents are found as follows.

la=lh+g —]2.18 =h+ 5.934—532.450 = 0.843£3245°,
—j3.18 3.182—90° 0
ls=h*g 315 = *5o93,32480 ~ 00364~ 57:557h
By observing this circuit, it is understood that the current 1, is opposing the current I,. Hence I, = —I,
Therefore,

I, = —0.843232.45°[, = 0.8432 — 147.55 °I,
Voltage across the 5Q resistor is V;, which is equal to I3 * 5. Hence, V; = 2.684 — 57.55°I;
I 1 12180°
I, 0.8432— 147550 0.8432 — 147.550
1
0.8432 — 147.55°

= 1.1864327.55°

V, = 2.684 — 57.55°I, = 2.68£ — 57.55° ( )12 =3.179290°1,

Vi
B = —7==—-3179290° = 3.1792270°0
2

I, | -{3;.189 | L
® 1<
2 <+> 50 10ﬂ§ Vy=
°

I, | -{?}.ISQ | L,
o 9
AN
..... >I4
A SQ; V,=
I;
o ®

Fig. 5.57: Modified circuit of Example 5.16 when the output port is short circuited (Repeated)

Step2: Setting the current at the output port as zero or the output port is open circuited.

With this concept, the circuit is modified and presented in Fig.5.40. By observing the circuit, the input
current I; divides to 5Q and (-j3.18Q)/10Q. In order to realize this, the circuit is redrawn as shown
in Fig.5.41. Now it is understood that the current flowing in (-j3.18) Q and 10Q at the output side
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remain the same. In order to find the current through these branches are found by the current
division technique.

5 5 5
ls.1800r 100 = Iy * (5 —j318+ 10) =h (15 —j3.18> - (15.334 - 11.96")11
= 0.326£11.96°I,
; ; ( —j3.18 4+ 10 ) (10 —j3.18> 10.492 — 17.64°
= * | —m— — — — | = E3 =
0 =1 \5-j3.18+10/ ' \15-,3.18 15.332 — 11.96°

Voltage across the 10Q resistor is V,, which is equal to I}y, * 10. Hence, V, = 3.26£11.96°I;

)11 = 0.684,—5.68°1,

v, .
—2 =326211.96°n
1
_h_ L = 0.306£ — 11.96°
TV, 326211.96° oo

Voltage across the 5Q resistor is V;, which is equal to s, * 5. Hence, V; = 3.422—5.68°1;
TV, 3.26211.96°, '

— 0 0
ABCD or T parameters of the given circuit is [f‘ g] = (1)2322 _ 1;820 1 31322;2277%50]

Verify that the circuit is reciprocal or not:

For reciprocal circuit, AD — BC =1
AD — BC = (1.0492 — 17.64°)(1.1864327.55%) — (3.179£270°)(0.3062 — 11.96°) =
(1.2442309.91°) — (0.971£258.04°) = 0.798 — j0.952 + 0.201 + j0.949 = 1

Hence the given circuit is reciprocal.

5.6.4 HYBRID PARAMETERS

Some circuits do not have either Z or Y parameters. In transmission parameters, voltage at the input
port and current at the output port are considered as dependent variables. Hence, the input voltage
and output port currents are linearly related with the input port currents and output port voltages
sequentially by the equations (5.87) and (5.88). These equations could be arranged in matrix form
in equation (5.89).

V1 = h1111 + h12V2 (587)
12 = h2111 + h22V2 (588)
Vl] [hll hlz] [11]
= 5.89
15 et |7 559
V;
1 v,=0
Vi
P = 2| (5.91)
2 L=0
hy, =2 (5.92)

Iy =0
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hyy = 2| (5.93)

V2 '1,=0

By looking the equations (5.90) to (5.93), hy1, hy3, hy1 and h,, are the impedance, voltage gain, current
gain and the admittance respectively. Hence these parameters are called hybrid parameters.

hy, = Short-circuit input impedance

h;, = Open-circuit reverse voltage gain (Since it is the ratio of input voltage to output voltage)
h,;, = Short-circuit current gain

h,, = Open-circuit output admittance

These parameters are calculated as Z and Y parameters based on the conditions described. For the
reciprocal circuits, Z,, = Z,; and Y;, = Y,,. The h parameters of the reciprocal circuits are hy, =
—h;). The equivalent circuit of the hybrid parameter circuit is represented in Fig. 5.65.

I, — by <+——
— N \N— °

+ +

\2 22 <i-> <'> harh §h11 v

2

Fig. 5.65: Equivalent circuit of the h parameter of a two-port network
Example 5.20: Determine the hybrid parameters of the circuit shown in Fig.5.28.

Solutions: The circuit shown in Fig.5.28 is represented as a two-port network model as shown in Fig.5.
29 (Ref. Section 5.5.1, Example 5.11). Solve this problem by short circuit the output port and open
circuit the input port sequentially to obtain the h parameters.

I, —» 10Q 200 +—L
AYAVAY, NN
\Y) 30Q Vs
@ @

Fig. 5.29: Circuit of Example 5.11 rearranged as two-port network pattern (repeated)
Step1: Setting the voltage at the output port as zero or the output port is short circuited.

With this concept, the circuit is modified and presented in Fig.5.62. In order to find the two-port
parameters, the circuit is solved with node analysis with the node potential V4, the concern circuit is
drawn in Fig.5.63.
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L, —» 10Q 200 — 1,
NV NV
Vl 30Q2 V2=
L g

Fig. 5.62: Circuit of Example 5.17 when the output port is short circuited (repeated)
L —» 10Q v,

T

Fig. 5.63: Circuit of Example 5.17 when the output port is short circuited (repeated)

Apply the node analysis concepts at Va node, I; + I, =I5 (5.94)
The equation (5.94) is written as, hVa  07Va _Ta
10 20 30

Vi Vy Vo Wy
10 30 20 10
Hence, V, = 0.546V;.
Vi-Va4 _ V;—-0.546V;

Whereas the current flowing in 10Q resistor is [; = m 0 = 0.0454V;
The current ﬂowing in 20Q resistor is I, = O;ZA = % = —0.0273V;
With this, hy; = Z coas = 22.060Q
I, = 0.0454V, = 0.0454( - 0273> —1.6631,
Hence hy; = j—j = - (ﬁ) = -0.601

Step2: Setting the current at the input port as zero or the input port is open circuited.

With this concept, the circuit is modified and presented in Fig.5.31. By observing the circuit, it is
understood that there is no current flows in the 10€2 resistor and the output current I flows through 20
and 30Q resistors only.
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L,=0 10Q 20Q +—1

Fig. 5.31: Circuit of Example 5.11 when the input port is open circuited (repeated)
Apply the loop analysis concepts to the second loop, V, — 201, — 301, = 0; V, = 501,

The voltage across the input terminals is V; which is equal to the voltage across 30Q2. Since the current
flows in the 10Q resistor is zero. Hence, V; = 301,.
v, _ 30l

From this, h;, = T oL = 0.6 is obtained.
2 2

L 1
where, h,, = V—z =5 =0.02v
2

hz1  hy,
Verify that the circuit is reciprocal or not:

hyy h1z]_ 22.06 0.6
—-0.601 0.02

h parameters of the given circuit is [
For reciprocal circuit, hy;, = —hy;
Hence the given circuit is reciprocal.

Example 5.21: Determine the hybrid parameters of the circuit shown in Fig.5.66.

Solutions: Solve this problem by short circuit the output port and open circuit the input port sequentially
to obtain the h parameters.

L — 200 200 200 <01
— N\ N—T" " NN—T W\ °
+ +

Vi j10Q2 j2002 j30Q2 'V,
® ®
Fig. 5.66: Circuit of Example 5.21 to find the h parameters

Step1: Setting the voltage at the output port as zero or the output port is short circuited.

With this concept, the circuit is modified and presented in Fig.5.67. By looking this circuit, it is
understood that the impedance (j30Q) is negligible, since it is across the short-circuited terminals. The
modified circuit is drawn in Fig.5.68.
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I, —» 20Q2 20Q 20Q
®

<+«

NA—T VY

_|_

\'A 5 j10Q %jZOQ §j30§2

Fig. 5.67: Circuit of Example 5.21 when the output port is short circuited

_>I3

— N\N—TNN—T N
+

I
Vv, 125100 500 V2
@ @

Fig. 5.68: Modified Circuit of Example 5.21 when the output port is short circuited

Apply the node analysis concepts at node A, I; =1, + I3

. . . Vi-Va Va4 . Va-Vg
Th ation (5.95) is written as, ~—2 = 4 4+ -4_E
e equation ( ) > 20 j10 20

i _Va Va Va_ Vs

20 20 ' j10 20 20
Apply the node analysis concepts at node B, I3 + I, = I

. L Va-Vs , 0-Vg _ Vg
The equation (5.97) is written as, o T 50 = 720
Va_ Y8 VB VB
20 j20 @ 20 ' 20
Hence, V, = (2 —j1)V; in(5.67a)
vy =Vp(1—j6)
@2-j1)
Vi=V, ———
a—-je)
e CRI L)
bAa-je
Vi-Va _

(5.95)

—(1+/5)

Whereas the current flowing in 20Q resistor is [; = s

 20+(1-j6) 1t

(5.96)
(5.97)

(5.98)
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With this, hyy = = (22.28 + j8.465)Q
1

0-Vg -V, —1;(22.28+j8.465)

The current flowing in (output side) 20Q resistor is I, = 20— 201J6) = 20e(1-j6)

Hence hy, = 2 = 0.038 —j 0.192

Lo
Step2: Setting the current at the input port as zero or the input port is open circuited.

With this concept, the circuit is modified and presented in Fig.5.69. By observing the circuit, it is
understood that there is no current flows in the 20€2 resistor and hence, the circuit is modified as shown
in Fig.5.70.

—N\N\N—T"N—TVWN .

Fig. 5.69: Circuit of Example 5.21 when the input port is open circuited
20Q C 20Q D <«— 1

A °
+ <L, | < ¢ +

Wi leQ% 20 1, <j30Q2 V,
8

 J
Fig. 5.70: Modified Circuit of Example 5.21 when the input port is open circuited

Apply the node analysis concepts at node C, Iy = I + Ig (5.99)
The equation (5.99) is written as, VDZ_OVC = ]_VZ—CO 20‘:3_10

Z_l()) = % sz_cO 20‘:'10 (5.100)

Vp = (1.8—j1.4)V,

Ve = (0.3462 + j0.2692)V,
Apply the node analysis concepts at node D, I, = I + I, (5.101)
The equation (5.101) is written as, [, = 2—/C 4 22

20 30
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V¢ Vo , Vb
20 © j30 @ 20

I, = —(0.05)V; + V5 (0.05 — j0.033)
I, = —(0.3462 + j0.2692)(0.05)V, + V,(0.05 — j0.033)
I, = (0.0327 — j0.0465)V,,
From Fig.5.98, it is understood that V, =V,
I, = (0.0327 — j0.0465)V,

where, hy, = "/— = (0.0327 — j0.0465)v
2

I, = (5.102)

The voltage across the input terminals is V/; which is equal to the voltage across j10Q. Hence, V; = j101,.

Ve (0.3462+j0.2692)V,
= = (0.0192 +
204510 204510 (

Whereas the current flowing in (20+j10)Q resistor is Iq =
j0.0038)V,
V; =j10(0.0192 + j0.0038)V,
V; = (—0.038 +0.192)V,

From this, hy, = Z— == (—0.038 +j0.192) is obtained.

hyy hlz] B [(22.28 +j8.465) (—0.038 + jO0. 192)]
hy: hy,| ~ [(0.038—0.192) (0.0327 — j0.0465)

Verify that the circuit is reciprocal or not:

h parameters of the given circuit is [

For reciprocal circuit, hy, = —hy;
Hence the given circuit is reciprocal.

5.6.5 INTER-RELATIONSHIP BETWEEN TWO PORT NETWORK
PARAMETERS

All parameters are written related with same input and output terminals of a two-port network. Hence
there is a relationship between these parameters.

A. Relation between Z and Y Parameters:

The impedance parameters and admittance parameters are written with respect to their input and output
variables in equations (5.103) and (5.104) respectively.

V1] [Zn Z12] [11]
= 5.103
vl=lz zzll (>-102)
11] [Yn Y12] [V1]
= 5.104
l=l vl (109
The equation (5.103) could be modified as the equation (5.105). With the inverse of the matrix, the
equation (5.105) is written as equation (5.106).

11] [211 le]‘l [Vl]

= 5.105
[12 Ly Zy V; ( .
[Zn Z12]_1 — ;[ Ly, _Z12]

Zy1 Zya Zy1Z59~Z12Z01 | =231 Zq
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11] 1 [ Zy2 _Z12] [V1]

= 5.106

[12 Zi1Zyp—Z12Z01 | —Zy1  Zyq 1V ( )

By comparing the equations (5.104) and (5.106), the admittance parameters could be related with z
parameters as presented in equation (5.107).

Z.
Yy =—2—
Z11222~212221
Y., = —Z12
12 —
Z11Zyn—Z1Z
11 ZEZ 12421 (5107)
_ 21
Y21 -
Z11Z33~Z12Z7,
_ Z11
YZZ -

211222212221
In vice versa, the open circuit parameters or the Z parameters are needed to represent in the terms of Y
parameters as presented in equation (5.108).

Y.
Z11 — 22
Y11Y22-Y12Y2,
7. = =Y,
12 —
Y;1Y,,—-Y,,Y,
11 ZEY 12421 (5108)
_ 21
Z21 -
Y11Y22-Y12Y2,
_ Y11
Z22 -

Y11Y22-Y12Y21
B. Relation between ABCD or T and Hybrid or h Parameters:
The transmission parameters and hybrid parameters are written with respect to their input and output

variables in equations (5.109) and (5.110) respectively. These matrices are represented as the
equation format in equations (5.111) to (5.114).

[]1/11] - 21 g [32] (5.109)
Vil [hy  heol[!

[121] - [hi hZ] [1/12] (5.110)
i = AV, - Bl (5.111)
h=CV, =Dl (5.112)
Vi =huli + h,Vs (5.113)
I, = hyy Iy + hy, Vs (5.114)

Using equation (5.113), find the current I; that is mentioned in equation (5.115) which is substituted in
equation (5.111).

I =2 (5.115)
21
12 - hZZVZ
Vi=hy T hy + ha Vs
hq1h h
Vi = (hio = 22) v, — (291, (5.116)
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By comparing the equations (5.111) and (5.116), the relations between the ABCD parameters in terms
of h parameters as below.

_ hi1ho\ — —Ay hyy

= (ma==0E) = 7B =

Where, Ap= hy1hy; — hyihyy

The equation (5.114) is modified as shown in equation (5.117).

L=(- h“)v2 - (——)12 (5.117)

By comparing the equations (5.112) and (5.117), the relations between the ABCD parameters in terms
of h parameters as below.

)
21 h21

h
C= ( 22) L
ha1 h21
Hence, ABCD parameters in terms of h parameters are given in equation (5.118).
_ An )
A= (=2
(-22)

- ()
- (-2
- ()

In vice versa, the hybrid parameters or the h parameters are represented in the terms of ABCD or T
parameters. By modifying the equation (5.112), the equation (5.119) is obtained which is compared
with (5.114).

I, = (—%) L+ GV, (5.119)

o (B (9

The equation (5.119) is substituted in equation (5.111) and compared with (5.113). The relation between
the h and ABCD parameters are given in equation (5.120).

V, = AV, — B[(—%) L+ (g) A
o= (o (255

B Ar
hiy = (5)”‘12 = (H)

Where, A= AD — BC

S (5.118)
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he = (3) (5.120)

C. Relation between ABCD or T and Z Parameters:
The Z parameters and T parameters’ two-port input-output relating equations are written as follows.
V, = AV, — BI,
I, =CV, - DI,
Vi =214 +Zy30,
Vo =21l + 2,1
V, of the Z parameter’s equation could be modified as below.

Vo =250
L =——F———
Zx
This equation is compared with I; of ABCD parameters equation. Hence, C = L ; D= ?—2 It is
21 21

substituted in V; of the Z parameter’s equation.

V,—2Z,,1 Z L1l yy—2 1,7
V1=Z11( 2 22 2>+Z1212=£V2— 114227412 2112
Zn Zn Zn

_ Az

The above equation is compared with V| of ABCD parameters equation. Hence, A = iﬁ ; B= 7
21

21
Where AZ= Z11Z22 - Z12Z21

A =21
Z1
B=-
I (5.121)
Tz
p=22
Z1
I; of the T parameter’s equation could be modified as below.
I, + DI,
2= —c

. S . . 1 D .
This equation is compared with V> of the Z parameters equation. Hence, Z,; = = Zyy = = It is

substituted in V; of the T parameter’s equation.
I; + DI, A AD_BC
Vi =A(—C )—BIZ =Ell +—C I,
The above equation is compared with V; of the Z parameters equation. Hence, Z;; = % 3 Zip = -

Where Ay= AD — BC
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A
Zi1 =7
A
le_?T
1 (5.122)
Zyn =7
D
Zpp =7

D. Relation between ABCD or T and Y Parameters:
The T parameters and Y parameters’ two-port input-output relating equations are written as follows.

V, = AV, — BI,
I, = CV, - DI,
I =Y,V + 11,V
I = Y1 Vi + Y2,V
I, of the Y parameter’s equation could be modified as below.

I, = Y5,V
v, = 2~ 122V
Y21
This equation is compared with V| of ABCD parameters equation. Hence, 4 = — % ; B=-— YL Itis
21 21

substituted in I; of the Y parameter’s equation.

12 - Y22V2 Y11Y22_Y12Y21 Z11

) + YV, =— Vo, = (=)L
21

L =Y, (

P Y21 Zn
The above equation is compared with the I; of the ABCD parameters equation. Hence, C =
_A_Y, D= _% Where Ayz Y11Y22 - Y12Y21

Y21 21
A= — 22
Y21
B==i
Ay ( (5.123)
T
p=_"1
Y21
I, of the T parameter’s equation could be modified as below.
. AV, =V,
>~ B
This equation is compared with I, of the Y parameters equation. Hence, Y,; = — %; Yy, = %‘ Itis
substituted in I; of the T parameter’s equation.
AV, -V, D AD_BC
I = AV, —B(T) = §V1 + (= B V2

L . . D
The above equation is compared with I; of the Y parameters equation. Hence, Y;; = 5 Y, =

—%T. Where Ay= AD — BC
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D
=5
A
Yip = _;T
1 (5.124)
Yor=-5
A
Yo =73

E. Relation between hybrid and Z Parameters:
The hybrid parameters and Z parameters’ two-port input-output relating equations are written as follows.
Vi =hilh +h,Vs
I = hy Iy + Y25,
Vi =12y + Zyp1,
Vo =211y + 2,1

By rearranging the equations of Z parameters, the following equations are obtained. Those are compared
with h parameter equations and the relations are obtained.

I —( Z“)I + ! V.
2 — Z22 1 (ZZZ) 2

7 —(A )1 12 17
1~ Z2 1 (ZZZ) 2

A
hyy = ZZZZ )
h12 — ?2
L (5.125)
h — 21
21 = s
1
hy, = E

By rearranging the equations of h parameters, the following equations are obtained. Those are compared
with Z parameter equations and the relations are obtained.

_ h11h22 _h12h21 h12
- (st b,

V= ()1 + Gt

A
Z11 - hzhz )
Z12 — :12
“h, (5.126)
Z — 21
21 Rys
1
Z22 -7
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F. Relation between hybrid and Y Parameters:
The hybrid parameters and Y parameters’ two-port input-output relating equations are written as follows.

Vi = hyidy + hypV,
I = hy1ly + Y550,
L =Y.V, +Y3,0,

I =Y, Vi + Y3,V
By rearranging the equations of Y parameters, the following equations are obtained. Those are compared
with h parameter equations and the relations are obtained.

Y21 AY
L= (3 + GOV,
2 (Y11> 1 (Yll) 2

V—(1>I + Y12V
1~ Y11 1 ( Y11)2

1
hiy = E\
_ "Iy
hy; = Yis
Yo ( (5.127)
hy, =2
21 = 3
A
hy, = ;Yl

By rearranging the equations of h parameters, the following equations are obtained. Those are compared
with Y parameter equations and the relations are obtained.

hyy hi1haz — hiphyy
Vi= (h—u)lz + (— h—21> V2
OR
Ap a1
I = (h W, + (h_11> Vi
1 iz
L= (h_u) Vi+ (- h_u)Vz
1
Vi =5 )
— M
Y, = s
hor ( (5.128)
Yy = -2
21 =5
A
Y2, = h_lhl

The relations among all parameters needed to be obtained as the same procedure discussed above, these

are presented as in Table. 5.1.
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Table 5.1: Relations among the two-port network parameters

Parameters Z Y | ABCD h
Z [Zn 212] b 1y A Ar Ay Ry
221 222 ﬂy Ay C C hzz hzz
Y Y 1D ~hy; 1
b Ay AL T c ..t haa  hapl
A T A R TR
ﬂz 62 Y21 YZZ B B hll hll
~Zyn I R hy  n
b, A1 vB B by hy
oo | byt LBy
Zy Ipn Yo Yy ¢ D hyy hyy
4 2 i A Yu (_@) (_i)
2 Zpd L Yy Yy | hyy hyy
h b Zy 1 ¥y (E) (ﬁ) hi hlZ]
Zy Iyp Yiu Yy D D hay  hap
—Zy; 1 Y1 Ay (_ l) (E)
Zy Iy Yi1. Yy D D

Az= 211225 — Z13Z51: By=Y11Yar — YiYo1: By= hyihyy — hyshyy Ar= AD — BC

5.6.6 INTER CONNECTION OF TWO PORT NETWORKS

A large and complex network will be divided into multiple sub-networks. These sub-networks are joined
like series, parallel and cascade connection in order to form the original large network. In order to
find the two port parameters of the large network, there is a necessity of finding a method to
evaluate if these networks are in series or parallel or cascade connection. Figure 5.71, Fig. 5.72
and Fig. 5.73 are drawn for the two sub-networks connected in series, parallel and cascade
connection respectively.
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A. Series connection of sub-networks:

Lia Ia
—>  —

—> 1 L ¢—
+ + ¥ n

A V1Al A Vaa A

Vi Lip Ly vV,
—> -

\/ + + v

Vl B B Vz B

Fig. 5.71: Series interconnection of two two-port networks (A and B)

Fig.5.71 represents two series connected sub-networks. The Z parameter equations for these networks
are presented in equations (5.129) to (5.132).

Via = Zy1alia + 2124004 (5.129)
Voa = Zy1al14 + Z224124 (5.130)
Vip = Z11glip + Z125128 (5.131)
Vap = Z31plhp + Z328128 5.132)

Since these sub-networks are in series. the current in these networks are the same. Hence the input
currents I; 4 and I 5 are equal and that is equal to I;. Similarly it is applicable to the output current also.
Also, the input voltage (V;4, V1) and output voltages (V,4, V) are added in order to obtain the original
network input and output voltages (V;,V,) respectively and that are presented in equations (5.133) and
(5.134). The original network’s two-port Z parameters are written in equations (5.135) and (5.136). By
comparing the input and output voltage parameters of the original network with the series connected
networks, the Z parameter of the original network is represented in terms of the Z parameters of these
sub-networks as in equation (5.137).

Vi =Via+Vip = (Z11a + Z11p)1s + (Z12a + Z128)]2 (5.133)
Vo =Vou +Vap = (Z21a + Z21) s + (Z224 + Z228) 12 (5.134)
V, = Zily + Zpol, (5.135)
Vy = Zouly + Zyyl, (5.136)

[le ZlZ] — [leA + leB ZlZA + ZlZB] — [leA Z12A] + [leB ZlZB]
Z21 Z22 ZZlA + ZZlB ZZZA + ZZZB ZZlA ZZZA ZZlB ZZZB

[Z] = [Z4] + [Zg] (5.137)
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The equation (5.137) presents that the z parameters for the original network are the sum of the z
parameters for the individual sub-networks. This equation or the concepts could be extended to the n
series connected sub-networks. In order to find other parameters of the two-port network, the Table 5.1
is used.

B. Parallel connection of sub-networks:

lia —»

Fig. 5.72: Parallel interconnection of two two-port networks (A and B)

Fig.5.72 represents two parallel connected sub-networks with two port parameters. The Y parameter
equations for these networks are presented in equations (5.138) to (5.141).

Lig =Y114Vi4 + Y124V24 (5.138)
Ia = Y214V1ia + Yo24V04 (5.139)
Lig = Y118Vip + Yi28V2p (5.140)
Ig = Y218V1p + Y225Vop (5.141)

Since these sub-networks are in parallel, the voltage in these networks is equal or remains the same.
Hence the input voltages V;4 and V; are equal and that is equal to V;. Similarly it is applicable to the
output voltages also. The input currents (I;4, I;5) and output currents (5,4, I,5) are added in order to
obtain the original network input and output currents (Iy,1,) respectively and that are presented in
equations (5.142) and (5.143). The original network’s two-port Y parameters are written in equations
(5.109) and (5.145). By comparing the input and output voltage parameters of the original network with
the series connected networks, the Z parameter of the original network is represented in terms of the Z
parameters of these sub-networks as in equation (5.146).

L =L+ Lg = Y114 + Y11)V1 + (Y124 + Yi2B)V> (5.142)
I =Ly + g = (Y214 + Y218)V1 + (Y224 + Ya2)V2 (5.143)
11 = Y11V1 + Y12V2 (514’4’)

I =Y V1 + YV, (5.145)
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[Yn Y12] _ [YllA +Yiip Yizat Y123] _ [YllA Y12A] n [YllB Y123]
Y21 Y2 Y214+ Ya1p Yo2u +Yazp Y214 Ya2a Y218 Yazs

[Y] = [Y4] + [Ye] (5.1452)
The equation (5.145a) presents that the Y parameters for the original network are the sum of the Y
parameters for the individual sub-networks. This equation or the concepts could be extended to the n
series connected sub-networks. In order to find other parameters of the two-port network, Table 5.1 is
used.

C. Cascaded connection of sub-networks:

Il Il A IZA IlB IZB IZ
—> —> <+“— <+ <—
T B F 1
Vl Vl A A Vz A VIB B VZB Vz
- - — - —_ J—

Fig. 5.73: Cascade interconnection of two two-port networks (A and B)

Fig.5.73 represents two cascade connected sub-networks. The two-port parameters of the original
network are to be found using two cascade sub-network’s two-port parameters. The ABCD or T
parameter equations for these networks are presented in equations (5.145) to (5.148). The original
network’s two-port ABCD parameters are written in equations (5.149) - (5.150).

VlA =AAV2A_BA12A (5145)
11A = CAVZA - DAIZA (5146)
VlB = ABVZB - BBIZB (5147)
113 = CBVZB - DBIZB (5148)
V1 = AV2 - BIZ

I, =Cv, —Dlz} (5.149)
R WA |

[11 =l¢ pll-1, (5.150)

By observing these sub-networks, the following points are noted down.

Vi=Vias Vou=Vig; Vop =Volh =Lg La=—lLg g =1, } (5.151)

Based on the equation (5.151), the equations (5.145) - (5.148) are modified and presented in equations
(5.152) and (5.153). Those equations are presented in matrix form in (5.154) and (5.155) respectively.

Vi =A4Vip + BAllB}

5.152
Iy = CyVig + Dalip ( )
Vig = AV, — BBIZ}

5.153
Lig = CgV, — Dgl, ( )

=1e ol (5.154)
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[?ﬁ]zgéﬁ Bgﬂll%]g ) (5.155)
[111]2[5: Dﬂ[cg Dﬁ”-i]} (5.156)

By comparing the input and output voltage parameters of the original network with the cascade connected
networks, the ABCD or T parameter of the original network is presented in equation (5.150) and the
simplified ABCD parameters of these sub-networks as in equation (5.157).

[T] = [Tal. [Ts] (5.157)
The equation (5.157) presents that the ABCD or T parameters for the original network are the product of
the ABCD or T parameters for the individual sub-networks. This equation or the concepts could be
extended to the n cascade connected sub-networks. In order to find other parameters of the two-port
network, Table 5.1 is used.

Example 5.22: Find % of the circuit shown in Fig.5.74.
N

Solutions: The circuit shown in Fig.5.74 is a two-port network which consists of two two-port networks
in series. First, both circuits' Z parameters are to be calculated. The circuit A consists of (-j45Q)
and (j10Q) and 20€Q, that forms the T network and is shown in Fig. 5.75. The circuit B consists of
(-j20€Q2) and (j40€2) and 504, this also forms the T network which is shown in Fig. 5.76.

50 -j45Q 1002
—A\WY
_|_
20Q
+ & &
<_> - =~ 40Q
500
o (YT I¢ -
~— {€ °
j40Q -j20Q

Fig. 5.74: Circuit of Example 5.22
Step1: Finding the Z parameters of Circuit A

The circuit A is shown in Fig.5.75. By applying the concepts of Z parameters, the equations are
to be written as follows and the corresponding Z parameters are found.

1~ 'l"“SQ 10 1,

Via 200 Vaa

[ @
Fig. 5.75: Circuit A of Example 5.22
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Via = Zy1alia + Z124124
Van = Zo1alia + Z24124
7, = [Z11A Z12A] [20 —j45 20. ]
Zo1a Zyza 20 20 + ;10
Step2: Finding the Z parameters of Circuit B
The circuit B is shown in Fig.5.76. By applying the concepts of Z parameters, the equations are to be
written as follows and the corresponding Z parameters are found.

IIB <_Izla
j40Q2 -j20Q

Fig. 5.76: Circuit B of Example 5.22
Vig = Z11glip + Z128128
Vap = Zy1plhp + Z22p15p
Z _ |:le3 leB] _ [50 +]4’0 50 ]
B~ ZZlB ZZZB - 50 50 _]20
Step3: Finding the source voltage in terms of the output voltage
The circuit shown in Fig.574 is represented as a two-port network model as shown in Fig.5. 77 with their
equivalent Z parameters. Both circuits A and B are in series, Z parameters are added as per the
interconnection of networks.
_[70 —j5 70
ZatZp = [ 70 70—j10]
I

—ANN—e—
+

<> .
+

40Q
A Vi| oz V2 §

Fig. 5.77: Circuit of Example 5.22 with the equivalent circuit parameters
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Vi =211 + Z1,1,
Vo =251 + Zy,0,

As per the circuit shown in Fig. 5.77, the input source voltage and the output voltage could be
written as

V. =Vs—5I;; V,=—40I,

Hence, I, = — Z—g. Both I, and Z,4, Z;, are substituted in the Z parameter equation of Vi and the equation
(5.158) is obtained.
vV, = (70 —j5)1, + 701,

Ve — 51, = (70 — j5)I, + 70(—% (5.158)
With Z,4, Z,, are substituted in the Z parameter equation of V2 and the equation (5.159) is obtained.
Vy = 701, + (70 — j10) (-2 (5.159)
_ 0
From this, I; = % V, obtained, which is substituted in equation (5.158).
Ve = (1.28 — j0.856)V,

%
V—S = (1.28 — j0.856) = 1.539~ — 33.77°
2

Example 5.23: Find the admittance parameters of the circuit shown in Fig.5.78.

Solutions: The circuit shown in Fig.5.78 is a two-port network which consists of two two-port networks
in parallel. First, both circuits' Y parameters are to be calculated. The circuit A consists of (-j5S),
(j5S) and 18, that forms the T network and is shown in Fig. 5.79. The circuit B consists of (-j10S),
(2S) and 28, this forms the © network which is shown in Fig. 5.82.

-j5S j5S

Fig. 5.78: Circuit of Example 5.23
Step1: Finding the Y parameters of Circuit A

The circuit A is shown in Fig.5.79. By applying the concepts of Z parameters, the equations are
to be written as follows and the corresponding Z parameters are found.
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-i5S i5S

[ L ]
Fig. 5.79: Circuit A of Example 5.23

Lia =Y114V1a + Y124V04
La =Yo14V14 + Yo24V04

By short-circuiting the secondary terminals, the circuit 5.108 looks like 5.109. From which Y;,4 and Y514
are found.

-j5S i
— L, ] j5S L

Via 18 V24=0

Fig. 5.80: Circuit A of Example 5.23 with input-output parameters and the output port short-circuited

The equivalent parameters of the circuit are to be calculated. (1S) and (jSS) are in parallel. Hence (1+j5)S
is obtained. (-j5S) and (1+j5)S are in parallel. The result value is (25-j5)S.

Hence Y;,4 = (25 —j5)S.

_~har(5)
0+G)
Ly =—(1-j0.2)L,

_ lia _ Iza _
AS Y11A - _V ) Y21A - _V ) hence Y21A - _255
1A 1A

IZA

Similarly, short-circuiting the primary terminals, Y;,,4 and Y,, 4 are found.

oI . -i5S i5S «— 1,
% m 4
N
Vig=0
1B 1S VZB
L ]

Fig. 5.81: Circuit A of Example 5.23 with input-output parameters and the input port short-circuited
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By performing the calculation similar to the output short-circuited, the Y;,, = —25S and Y, =
(25 — j5)S are calculated.

Y — [YllA YlZA] — [25 _]5 _25 ]

47 Y214 Yaza =25  25-)5
Step2: Finding the Y parameters of Circuit B

The circuit B is shown in Fig.5.82. By applying the concepts of Y parameters, the equations are
to be written as follows and the corresponding Y parameters are found.

o« (1N o
-j108

[ + @
Fig. 5.82: Circuit B of Example 5.22
Lig =Y118Vip + Yi28V2g
Ig = Y21Vip + Yo2pVop
Y, = [YllA YlZA] _ [25 —-Jj5 =25 ]
A7 Y04 Yoou —-25 25-—j5
Step3: Finding the Y parameters of the original network

As per the interconnection concept, circuit A and circuit B are connected in parallel. The Y parameters
of the individual circuit are found. Hence the original circuit’s Y parameter is the addition of the
individual circuit’s Y parameters.

27 —j15 =25 +j10]
—-25+j10 27 —j15
Example 5.24: Find the two port parameters of the circuit shown in Fig.5.83.

30Q 40Q 6002

oW — A —

§209 §509 §209

@ L
Fig. 5.83: Circuit of Example 5.24

Solutions: The circuit shown in Fig.5.83 is a two-port network which consists of two two-port networks
in cascade connection. Hence, both circuits ABCD or T parameters are to be calculated. The circuit
A consists of (30Q2), (50Q2) and (20Q2), that forms the © network and is shown in Fig. 5.84. The
circuit B consists of (40Q), (60Q2) and (20€2), this forms the T network which is shown in Fig.
5.85.

Y=YA+YB=[
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V1 = AV2 - BIZ 11 = CVZ - D12
Step1: Finding the ABCD or T parameters of Circuit A

The circuit A is shown in Fig.5.84. By applying the concepts of T parameters, the equations are
to be written as follows and the corresponding T parameters are found.

30Q

—» Lia AN <+— by
— 1
20Q 50Q2
*— L

Fig. 5.84: Circuit A of Example 5.24

Via = AgVou — Baloy lig = C4Vou — Dulzy
1,4%20

By open circuiting the output terminals, V; 4 = 161,4; I' = oo V2a = 500’
From this, A, =1.6; C, = 0.1
By short circuiting the output terminals, Vo4 = 0; Vi, = 121, 4; 1" = _11:0*20; Vig=—301"
From this, B, = 30; Dy = 2.5
30Q
L ——
—> 1"
§209 500
[ L

Fig. 5.85: Circuit A of Example 5.24 with short circuiting the output terminals
Step2: Finding the ABCD or T parameters of Circuit B

The circuit A is shown in Fig.5.86. By applying the concepts of T parameters, the equations are to be
written as follows and the corresponding T parameters are found.
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40 6002

—WW, WW——e

§20§2

@ @
Fig. 5.86: Circuit B of Example 5.24
Vip = ApVap — Bplap ig = CgVap — Dplzp
By open circuiting the output terminals, V5 = 60I,5; Vo5 = 60[,5
From this, Ag = 3; C5 = 0.05

—1;4%20

By short circuiting the output terminals, V,5 = 0; V5 = 55I;5; """ = o Vi = —2201,5
From this, B, = 220; D, = 4
— 5 I, 40Q 60— I,
—> "
20Q
@ ' o

Fig. 5.87: Circuit B of Example 5.24 with short circuiting the output terminals

T. = [AB BB] _ [ 3 220]
57 1Cs Dpl~ lo.os 4
Step3: Finding the T parameters of the original network

As per the interconnection concept, the circuit A and the circuit B are connected in cascade connection.
The T parameters of the individual circuit are found. Hence the original circuit’s T parameter is
the multiplication of the individual circuit’s T parameters.

B 163 472
T=TyxTp = [0.425 32

Example 5.25: Find % for the given two-port network shown in Fig.5.115. Let Y;, =Y,; =0; ¥;; =
N

2mS andY,, = 10mS.



302 | Electric Circuits and Networks

I 600 <«
= Ao .
_|_
+
<> §3OOQ
Vs >+ Y]
\VO
100Q2

Fig. 5.88: Circuit of Example 5.25

Solutions: The circuit shown in Fig.5.88 is a two-port network which consists of two two-port networks
in series. First, both circuits' Z parameters are to be calculated. The circuit A’s Y parameters are
given. From that, Z parameters are to be found. The circuit B consists of (100Q2) only which is
shown in Fig. 5.89.

Step1: Finding the Z parameters of Circuit A

The circuit A of the Figure shown in Fig.5.88 has [Y] parameters that is converted into Z
parameters.

YA _ [Y11A Y12A] _ [0002 0 ]
Y214 Ya2a 0 0.001

7, = [leA Z12A] _ [500 0 ]
Z21a Z224 0 100

Step2: Finding the Z parameters of Circuit B
The circuit B is shown in Fig.5.89. By applying the concepts of Z parameters, the equations are
to be written as follows and the corresponding T parameters are found.

ILp—» <1
o

§100Q

— o
Fig. 5.89: Circuit B of Example 5.25
By open circuiting the output terminals, V;5 = 1001,5; V,5 = 100/,
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From this, Z;;5 = 100Q; Z,,5 = 100Q
By open circuiting the input terminals, V; 5 = 1001,5; V,5 = 1001,5
From this, Z,,5 = 100Q; Z;,5 = 100Q
7. = [leB Z123] _ [100 100
Zy1p Za2B 100 100
Step3: Finding the Z parameters of the original network

As per the interconnection concept, circuit A and circuit B are connected in series connection.
The Z parameters of the individual circuit are found. Hence the original circuit’s Z parameter is the
addition of the individual circuit’s Z parameters.

600 100
Z=2a% 25 = 100 200
Iy 600 -1
—— @
N +
+
V, or 30002
VS - V] Z
Vo
S .

Fig. 5.90: Circuit of Example 5.25 with the equivalent circuit parameters
Vi =12y + Zyp1,
Vo =211y + 2,1
As per the circuit shown in Fig. 5.90, the input source voltage and the output voltage could be written as
V. =Vs—60I; V,=-300I,
Hence, I, = — 3%. Both I, and Z, 4, Z;, are substituted in the Z parameter equation of V; and the equation
(5.160) is obtained.

Vo

Vs — 601, = 6001, +100(— = (5.160)
With Z,4, Z,, are substituted in the Z parameter equation of V2 and the equation (5.161) is obtained.

Vv, = 1001, + 200(—3‘% (5.161)

Vo = 1001 + 200(— o= (5.162)

By solving both equations (5.160) and (5.162),

Vo
— =0.09395
Vs
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UNIT SUMMARY

1. The basic definitions of the network topology are described.

2. The formation of the tie-set matrix and cut-set matrix is explained.

3. The network solution is found using the tie-set analysis and cut-set analysis.

4. The concept of the two-port networks and the different two-port network parameters are
discussed. Many examples are solved to find the two-port parameters of the sample network.

5. The interconnection between the two-port network parameters is obtained and the same is
presented in table format.

6. The networks are interconnected in series, parallel or cascade mode. The method of finding the

two-port networks of such interconnected networks are described and the example problems are
solved.
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EXERCISES

Multiple Choice Questions
1. The graph of a network has 8 nodes and 5 independent loops. The number of branches of the graph is

a. 10
b. 11
c. 12
d 13

2. The graph associated with an electric network has 7 branches and 5 nodes. The number of independent
KCL equations and the number of KVL equations are ........................

a. 2and5
b. S5and2
c. 3and4
d. 4and3

3. The number of the trees in a network shown in Fig. 5.91.

NN— WY

Rz R4

d R3
3"

Ry

Vi

Fig. 5.91: Circuit for question 3

eo o
— W WD N

4. The graph of an electrical network has N nodes and B branches. The number of links (L) with respect
to the choice of a tree is given by.......

a. B-N+l1
b. B+N

c. N-B+1
d. N-2B+1

5. The admittance parameters of the passive resistive two-port network shown in Fig. 592 is y;; =
55; v,2 = 1S; ¥,1 = ¥4, = —2.55. The power delivered to the load resistor Ry in Wattsis .............
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30
AW

Two-port
resistive

20V network
R -6Q

Fig. 5.92: Circuit for question 5

a. 452.5
b. 238

c. 232.12
d. 14525

6. In the two-port network shown in Fig.5.93, the hy; parameters in Q is .............

1Q 1Q
e ——Wi—Le+
— I1

Vi v,
1Q

®

Fig. 5.93: Circuit for question 6

a. 0.25
b. 0.5

c. 0.75
d. 0.85

7. The Z parameters of the network shown in Fig.5.94 are Z,;, = 400); Z,, = 6002; Z,, =800; Z,, =
10042. The average power delivered to the load resistance (20Q2) is in watts..............
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Il > 10Q2 12
AN .
n +
O S
R Q
— Vi Y V2 v

20V

Fig. 5.94: Circuit for question 7

a. 3555
b. 28.45
c. 2435
d. 1825

8. The two-port network P shown in Fig.5.95 has input port 11° and output port 22°. It has an impedance
matrix Z with parameters denoted by Z;;. A 1Q resistor is connected in series with the network at port
1 as shown in the figure. The impedance of the modified two-port network is .....

2
P

[ —— L e e
: 1 5

Fig. 5.95: Circuit for question 8

o [futl Zip+1
| Zy Zyy+1
b [futl 7
| Zy Zyy+1
o [t zlz]
' L Z21 Z22
4 [+t zlz]
Nz +1 Zy,
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9. Two networks are connected in cascade as shown in Fig. 5.96. With usual notations the equivalent A,
B, C and D constants are obtained. Given that, C = 0.025245°, the value of Zis ..............

[ ]
| I
N

Fig. 5.96: Circuit for question 9

10£30°Q
404 — 45°Q
1Q

0Q

/a0 o

[ ]
| I
N
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[,

Z, Z,+7,
o B,
oz, z,+2,

Answers of Multiple-Choice Questions
l.c 2.d 3.d 4.a 5.b
6.a 7.a 8.c 9.b 10.d

Short Answer Questions:

Define: Network, Oriented graph, Tree and Link.

Describe the procedure to obtain the tie-set matrix.

Describe the procedure to obtain the cut-set matrix.

Define co-tree.

What is the fundamental cut-set? Explain with simple examples.
List the two-port network parameters.

Write the relation between Z parameters to Y parameters.

Write the relation between ABCD parameters to Z parameters.
If the two networks are connected in series/ parallel/ cascade connection, provide the resultant
network’s Z parameters.

10.Find the Y parameters for the circuit shown in Fig. 5.98.

20 20

—y Yy} Ly p—

VXN R DD =

20

. °
Fig. 5.98: Circuit for question 10

Long Answer Questions:

Explain the procedure for obtaining the tie-set matrix.

Explain the procedure for obtaining the cut-set matrix.

Derive the method to find the possible trees of the network.

Explain the two-port networks and its parameter descriptions.

Discuss the method for obtaining the Z/Y/T/H parameters for any two-port network.

Nk W=
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6. Discuss the network interconnections and explain the procedure for obtaining the two-port parameters
of those interconnected networks.

7. Derive the Y parameters from the given Z parameters.

8. Derive the ABCD or T parameters from the H parameters.

9. Obtain the interconnections between the Z parameters and the H parameters.

Numerical Problems
1. Find all possible trees of the network shown in Fig.5.99.

(YY)
L
R R
MW MMW—
Vv -~ C

Fig. 5.99: Circuit for question 1

2. Find the cut-set and tie-set matrix of the circuit shown in Fig.5.99, if the R=10€, Inductive reactance
is (j10Q), the capacitive reactance is (-j20€2) and the source voltage is 102 — 30°V.
3. Find the branch currents of the circuit shown in Fig.5.100 using (a) tie-set matrix (b) cut-set matrix.

50 10Q

WW W

+
5A 20 30 () 10V

Fig. 5.100: Circuit for question 3

4. Find the Z parameters of the circuit shown in Fig. 5.101.
10£30°Q 52-30°Q

3,90°Q

°
Fig. 5.101: Circuit for question 4
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5. Find the ABCD parameters of the network shown in Fig. 5.102.

20 5Q

— MM AN ——e

20

Fig. 5.102: Circuit for question 5

6. The Z parameter of the two-port network shown in Fig.5.103 is given below. The impedances are
represented in Q. Find the value of R, in Q, if the Z,, = (R, + 1jw)A.
[2 Jjw jw ]
jo 3+2jw

z, Z,

— 71 }—

VA

Fig. 5.103: Circuit for question 6

7. Find the Z parameter of the two-port network shown in Fig.5.104. Also calculate other two-port
parameters of this network.
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1Q 1Q
. I
| I |
Ejm
1Q 10

Fig. 5.104: Circuit for question 7
8. Find all two-port parameters of the network shown in Fig.5.105.

1Q 1Q
1 1
| I | | I |
QIQ
1Q 10
1 1
| I | | I |
QIQ

Fig. 5.105: Circuit for question 8

9. For the cascade network shown in Fig.5.106, find all two-port network parameters. Where the network
1 and network 2 remain same and the network is shown in Fig. 5.106.

— e

Network 1 Network 2

Fig. 5.106: Circuit for question 9
10.Find the Z and Y parameters of the network shown in Fig.5.107.



Electric Circuits and Networks | 313

4Q

2Q

8Q

6Q
Fig. 5.107: Circuit for question 10

PRACTICAL

1.  Use LTSpice to determine the h parameters of the circuit shown in Fig. 5.32 of Example 5.12.
2. Use LTSpice to determine the ABCD parameters of the circuit shown in Fig. 5.32 of Example

5.12.
3. Use LTSpice to determine all two-port parameters of the circuit shown in Fig. 5.32 of Example
5.12.
KNOW MORE

4. Use LTSpice to determine the Z parameters of the circuit shown in Fig. 5.32 of Example 5.12.

;L R point A R?
Point 1 to measure VoV * \
1 10 20 5
(1) g; -~ R3
LT ' <15

.tran 10

Fig. 5.108: Circuit for question 1 (When the output port is open circuited)

v, v, . o
o TheZ,; = f and Z,; = f are found when the output port is open circuited.

e I, and V, are measured at point 1 and point A in the circuit shown in Fig. 5.108. The plot
corresponding to that is shown in Fig.5.109 and Fig. 5.110. The input current ; is equal to 1A.
Hence obtained values of the Z parameters Z;, and Z,; are 26.15Q and 6.92Q respectively.
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V[nQU‘t}

Fig. 5.109: Circuit for question 1 (Voltage at Point 1 of the circuit shown in Fig. 5.108)

V(n003)

Fig. 5.110: Circuit for question 1 (Voltage at Point A of the circuit shown in Fig. 5.108)

Rl pointB R4 R5
' 10 i 20 3 5 Point 2 to measure
I1
15 3
1

tran 10

Fig. 5.111: Circuit for question I (Fig. 5.108)

v, v, . . o
o TheZ,, = i and Z,, = f are found when the input port is open circuited.
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V, and V, are measured at point 2 and point B in the circuit shown in Fig. 5.111. The plot
corresponding to that is shown in Fig.5.112 and Fig. 5.113. The input current I, is equal to 1 A.
Hence obtained values of the Z parameters Z;, and Z,, are 6.92Q and 16.54Q respectively. The
results are compared with the analytical calculation done in the example 5.12.

V(n002)

Fig. 5.112: Circuit for question 1 (Voltage at Point B of the circuit shown in Fig. 5.111)

V(n004)

Fig. 5.113: Circuit for question 1 (Voltage at Point 2 of the circuit shown in Fig. 5.111)

Use LTSpice to determine the Y parameters of the circuit shown in Fig. 5.32 of Example 5.15.
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Point 1 to [neasure Point A
R1 R4 RS
V110 20 5
O B wm
.tran 10

Fig. 5.114: Circuit for question 2 (When the output port is short circuited)

I I . o
o TheY; = V—1 and Yy, = V—Z are found when the output port is short circuited.
1 1

e [, and [, are measured at point 1 (current through R1) and point A (current through R5) in the
circuit shown in Fig. 5.114. The plot corresponding to that is shown in Fig.5.115 and Fig. 5.116.
The input voltage V; is equal to 1V. Hence obtained values of the Y parameters Y;; and Y,; are
0.043v and 0.018v respectively.

IR1)

Fig. 5.115: Circuit for question 2 (Current through the resistance R1 of the circuit shown in Fig.
5.114)
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I(RS)

Fig. 5.116: Circuit for question 2 (Current through the resistance RS of the circuit shown in Fig.

5.114)
Point B Point 2 to measure
R1 R4 ] R5
10 : 20 5 | va
> R2 <“ R3 !If T—
30 15 { i
L] |

tran 10 Ay

Fig. 5.117: Circuit for question 2

I I . . o
The Y;, = V—1 and Y,, = V—Z are found when the input port is short circuited.
2 2

I, and I; are measured at point 2 (current through R5) and point B (current through R1) in the
circuit shown in Fig. 5.117. The plot corresponding to that is shown in Fig.5.118 and Fig. 5.119.
The output voltage V, is equal to 1V. Hence obtained values of the Y parameters Y;, and Y,, are

0.018v and 0.068v respectively.
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Fig. 5.118: Circuit for question 2 (Current through the resistor R5 of the circuit shown in Fig.
5.117)

Fig. 5.119: Circuit for question 2 (Current through the resistor R1 of the circuit shown in Fig.
5.117)
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CO AND PO ATTAINMENT TABLE

Course outcomes (COs) for this course can be mapped with the programme outcomes (POs) after the
completion of the course and a correlation can be made for the attainment of POs to analyze the gap.
After proper analysis of the gap in the attainment of POs necessary measures can be taken to overcome
the gaps.

Table for CO and PO attainment

Attainment of Programme Outcomes
Course (1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)
Outcomes

PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7

CO-1

CO-2

Co-3

CO-4

CO-5

The data filled in the above table can be used for gap analysis.
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Index

ABCD parameters 273
Active or real power 32
Admittance 27
Alternating voltage 3
Amplitude 5
Application of Laplace transform in electric circuits 218
Average power 30
Average value of alternating waveforms 12
B
Balanced load 163
Bandwidth of parallel resonance 63
Bandwidth of series resonance 67
Branch 235
C
Complex power 32

Current at parallel resonance 67



Current at series resonance
Cut-set analysis

Cut-set matrix

Cut-set matrix using KCL

Cut-set matrix using KVL

Degree of a node

Delta (A)- delta (4)

Delta (A4)- star (Y)

Delta connected unbalanced load
Delta connection

Delta to star transformation

Duality

First order electric circuits
Form factor
Frequency

Fundamental cut-set

h parameters

Hybrid parameters
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62

241
243
243
243

236
178
177
164
81

80

124

194
16

241

279
278



322 | Electric Circuits and Networks

Impedance 27
Impedance triangle 27
Incidence matrix using KCL 238
Incidence matrix using KVL 239
Instantaneous power 29
Interconnection of the electric networks 3
Interconnection of two-port network parameters 292
Links 236
Maximum power transfer theorem 113
Mesh analysis 86
Network equilibrium equations 244
Network graphs 235
Node 235
Node Analysis 90
Norton’s theorem 108
One wattmeter method 170
Open circuit impedance parameters 254

Oriented graph 236



Parallel connection of sub networks
Parallel resonance

Peak factor

PF at series resonance

Phase

Phase difference

Phase sequence

Phasor

Power factor

Power measurement

Power triangle

Quality Factor at parallel resonance

Quality Factor at series resonance

Reactive power

Reciprocity Theorem

Relations between the two-port parameters

Resistive network
Resonance

RMS value of alternating waveforms
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293
66
16
62

149
10
33
166
34

67
64

32
120
284
246
61
14
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S

Second order electric circuits with dc excitation

Series connection of sub-networks

Series resonance

Short circuit admittance parameters

Source transformation

Star (Y) - delta(4)

Star (Y) — star (Y)

Star connected unbalanced load

Star connection

Star to delta transformation

Steady-state sinusoidal response of pure capacitive circuit
Steady-state sinusoidal response of pure inductive circuit
Steady-state sinusoidal response of pure resistive circuit
Steady-state sinusoidal response of R-C parallel circuit
Steady-state sinusoidal response of R-C series circuit
Steady-state sinusoidal response of R-L parallel circuit
Steady-state sinusoidal response of R-L series circuit
Steady-state sinusoidal response of R-L-C parallel circuit
Steady-state sinusoidal response of R-L-C series circuit
Step response of parallel R-C circuit with dc excitation

Step response of parallel R-C circuit with dc excitation using Laplace
transform

Step response of parallel R-L circuit with dc excitation

Step response of parallel R-L-C circuit with dc excitation

212
292
61
264
77
177
177
164
81
80
24
21
18
51
39
48
35
55
42
210
220

207
217
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Step response of series R-C circuit with dc excitation 203
Step response of series R-L circuit with dc excitation 199

Step response of series R-L circuit with dc excitation using Laplace 219
transform

Step response of series R-L-C circuit with dc excitation 212

Step response of series R-L-C circuit with dc excitation using Laplace 221

transform

Superposition theorem 95
Thevenin’s theorem 102
Three wattmeter method 166
Tie-set analysis 239
Tie-set matrix 240
Tie-set matrix using KCL 240
Tie-set matrix using KVL 240
Time constant 195
Time period 5
Transient response of source free series R-C circuit 196
Transient response of source free series R-L circuit 194
Transmission parameters 273
Tree 236
Twigs 236
Two wattmeter method 167
Two-port network parameters 291

Two-port networks 253
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U

Unbalanced load

Voltage at series resonance

Y parameters

Z parameters

163

64

264

254
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